

Aussteifungsverband Stahl ST12+

Inhaltsverzeichnis

Anwendungsmöglichkeiten	2
Berechnungsgrundlagen	3
Beanspruchung	3
Aussteifungsverband nach Petersen	3
Aussteifungsverband nach DIN EN 1993-1-1	3
Nachweis der Zugdiagonalen und Druckstäbe	3
Grundparameter	4
System	5
Querschnitte	5
Belastung	6
Bemessung	8
Ausgabe	9

Grundlegende Dokumentationen - Übersicht

Neben den einzelnen Programmhandbüchern (Manuals) finden Sie grundlegende Erläuterungen zur Bedienung der Programme auf unserer Homepage <u>www.frilo.eu</u> im Downloadbereich (Handbücher).

Tipp: Zurück - z.B. nach einem Link auf ein anderes Kapitel/Dokument – geht es im PDF mit der Tastenkombination "ALT" + "Richtungstaste links"

FAQ - Frequently asked questions

Häufig aufkommende Fragen zu unseren Programmen haben wir auf unserer Homepage im Bereich Service > Support > FAQ beantwortet.

Anwendungsmöglichkeiten

Das Programm eignet sich zur statischen Berechnung und Bemessung von im Hallentragwerksbau gebräuchlichen Aussteifungsverbänden:

- Fachwerkverband mit druckschlaffen Stahldiagonalen für Halle mit Fachwerk- und Vollwandbindern.

Die Bemessung von unterschiedlichen Querschnitten und Materialen pro Bauteil wird unterstützt. Somit ist die Staffelung z.B. der Pfosten und Diagonalen anhängig von der Beanspruchung möglich.

Normen / Berechnung

Es werden die Schnittgrößen nach Theorie II. Ordnung mit Ausfall der Druckdiagonalen ermittelt. Der Ansatz der Imperfektionen erfolgt dabei nach den folgenden verschiedenen Lösungsansätzen:

- DIN EN 1993:2010/2015
- ÖNORM EN 1993:2007/2017
- BS EN 1993:2008
- Petersen

Für die Zugdiagonalen wird ein Querschnittsnachweis geführt und für die Druckpfosten zusätzlich ein Stabilitätsnachweis.

Ein Nachweis des Gurtes für die zusätzliche Gurtnormalkraft wird im Programm nicht geführt.

Siehe Berechnungsgrundlagen auf der Folgeseite.

Literatur

- /1/ DIN EN 1993-1-1
- /2/ Petersen: Stahlbau (1990, 2. verb. Auflage, Braunschweig/Wiesbaden, Verlag Vieweg & Sohn
- /3/ DIN 4114: Stabilitätsfälle (Knicken, Kippung, Beulung) 1953

Berechnungsgrundlagen

Beanspruchung

Für die Berechnung der Schnittgrößen des Verbandes sind anzusetzen:

- die Windlast in Höhe des Verbandes
- die Gurt-Druckkräfte aller n Dachbinder

Die Gurtnormalkräfte sind γ -fache Ergebnisse einer vorherigen Rahmen- oder Binderberechnung. Aus diesen Gurtnormalkräften wird die γ -fache Ersatzbelastung für den Aussteifungsverband errechnet. Der Aussteifungsverband selbst wird für diese Ersatzbelastung und die zusätzliche γ_w -fache Windlast gerechnet. Zusätzliche Lasten in Verbandsebene können im Programm berücksichtigt werden.

Die Normalkraft im Druckgurt kann entweder durch den Anwender direkt vorgegeben oder, oder vom Programm aus den vorhandenen Schnittgrößen errechnet werden.

Die Berechnung der Gurtnormalkraft für doppelsymmetrische I-Profile erfolgt nach /3/:

$$N_{Gurt} = \sigma_d \left(b_1 \cdot t_{f1} + \frac{1}{5} A_w \right) - \frac{N_{Ed}}{2}$$

Bei der Verbandsbemessung müssen die Einflüsse aus Theorie II. Ordnung berücksichtigt werden.

Hierfür müssen Annahmen zu den Imperfektionen aufgestellt werden. Da jedoch dieser Ansatz der Imperfektionen nicht eindeutig geregelt ist, lassen sich in der Literatur verschiedene Beziehungen finden.

Aussteifungsverband nach Petersen

Petersen ersetzt die seitlich vorverformten Gurte durch eine Stabgelenkkette, an deren Gelenke die Abtriebskräfte angesetzt werden.

Die werden als Knotenlasten auf das Fachwerk angesetzt. Die Schnittgrößen werden nach Theorie II. Ordnung unter Berücksichtigung des Ausfalls der Druckstäbe berechet.

Die Näherungsformeln von Petersen gelten nur für Fachwerksysteme mit konstanter Feldlänge.

Es wird mit der Vorverformung $e = \frac{L}{500}$ gerechnet.

Aussteifungsverband nach DIN EN 1993-1-1

Die Berechnung der stabilisierenden Ersatzkräfte erfolgt nach DIN EN 1993-1-1, 5.3.3 als konstante Gleichlast.

Die Schnittgrößen werden nach Theorie II. Ordnung unter Berücksichtigung des Ausfalls der Druckstäbe berechnet.

Nachweis der Zugdiagonalen und Druckstäbe

Der Nachweis der Querschnittstragfähigkeit wird mit den plastischen Grenzschnittgrößen geführt. Er kann auch wahlweise elastisch als Spannungsnachweis erfolgen.

Für die Druckstäbe wird der Stabilitätsnachweis nach DIN EN 1993-1-1, 6.3.1 geführt.

Grundparameter

Norm und Sicherheitskonzept

- Auswahl der Norm:
- DIN EN 1993
- BS EN 1993
- ÖNORM EN 1993

Kombinationsgleichung (BS EN 1993)

Auswahl, nach welcher Gleichung aus EN 1990 die Lastkominatorik in der ständigen/vorübergehenden Bemessungssituation erfolgen soll.

Eigenschaften д 90 + System Belastung Ausgabe Norm und Sicherheitskonzept Bemessungsnorm DIN EN 1993:2015 gleiches yG für ständige Lasten DIN EN 1993:2015 DIN EN 1993:2010 Tragsicherheit ÖNORM EN 1993:2017 Querschnittsbemessung ONORM EN 1993:2007 BS EN 1993:2008

Auswahl der Schadensfolgeklasse für die Festlegung der Teilsicherheitsbeiwerte.

gleiches yG für ständige Lasten

Markieren Sie diese Option, wenn alle ständigen Lasten bzw. Lastfälle zusammen mit dem gleichen Teilsicherheitsbeiwert (γ G, sup oder γ G, inf) angesetzt werden sollen. Anderenfalls werden alle ständigen Lasten bzw. Lastfälle untereinander mit γ G, sup und γ G, inf kombiniert.

Tragsicherheit

Querschnittsbemessung

Auswahl, ob die Querschnittsbemessung elastisch nach Gleichung 6.1 oder plastisch nach Gleichung 6.2 erfolgen soll.

म

0

-

.

28,00

5,00 10

0

井

90

Eigenschaften

Belastung Ausgabe

Stahlmaterial Stahlart

Stahlgüte

System

Verbandlänge

Eigenschaften

ġ- Sy

Grundparameter

.... Querschnitte und Materialien

Baustahl

S235

[m]

System

Stahlmaterial

Auswahl der Stahlart und der Stahlgüte für Gurte, Pfosten und Diagonalen.

Stahlart	Baustahl
Stahlgüte	Baustahl Raustahl
System	Baustahl thermo
Verbandlänge	Baustahl wetterfest warmfester Stahl
Höhe	Hohlprofil warm Hohlprofil warm N
Felder	benutzerdefinierte Art

System

Verhandlänge	Gesamtlänge des Aussteifungsverbandes	Höhe	[m]
Verbandiange	(Spannweite des Systems)		
Lläha	Die Liëbe des Verbandes diese entericht	Aufteilung der Felder	konstante Feldlängen
Hone	dem Binderabstand	Bemerkungen	
		zum System	
Felder	elder Hier bestimmen Sie, wie viele Riegel insgesamt vorhanden sind.		
Aufteilung der Felder	Standard sind konstante Feldlängen.	Aufteilung der Felder	konstante Feldlängen
	Außerdem können	Bemerkungen	konstante Feldlängen symmetrische Aufteilun
unterschiedliche/individuelle Feldlängen gewählt und über einen separaten "Bearbeiten"-Dialog eingegeben werden.		zum System	individuelle Feldlängen
			- - ²
	Das vertanten nach Petersen gilt nur nur für S	systeme mit gleichen F	elalangen!

Querschnitte

Es können unterschiedliche Querschnitte und Materialen pro Bauteil definiert werden. Somit ist die Staffelung z.B. der Pfosten und Diagonalen anhängig von der Beanspruchung möglich.

Über die Buttons III rufen Sie die Querschnittsauswahl auf. Getrennt für Binder, Pfosten und Diagonalen können Sie die einzelnen Querschnitte aus der FRILO-Profil-Bibliothek wählen oder selbst Querschnitte definieren ("Benutzerdefiniert").

Binder	Zur Auswahl stehen I-Profile und I-Profile mit geneigten Flanschen.
Pfosten	Neben I-Profilen und I-Profilen mit geneigten Flanschen stehen rechteckige und runde Rohre zur Verfügung.
Diagonalen	Zusätzlich zu den bereits aufgeführten Querschnitten für Binder und Pfosten können hier auch Rundstähle, Flachstahl und dünnwandig offene Profile (Eingabe der Blechabmessungen) gewählt/definiert werden.
gedreht	Markieren Sie diese Option, wenn der Querschnitt um 90° gedreht eingebaut wird.

Grundparameter	c	20
Querschnitte und M	laterialien	
Belastung		
Ausgabe		
Binder (Standardquersch	nitt)	0
Querschnitt	IPE 400	1
Querschnitt gedreht		1
Material	S235 (Standard)	•
Stabliste Binder	zur Tabelle 甜	2
Pfosten (Standardquerso	hnitt)	0
Querschnitt	RO 88.9X3.2	
Querschnitt gedreht		
Material	S235 (Standard)	- 1
Stabliste Pfosten	zur Tabelle 甜	2
Diagonalen (Standardqu	ierschnitt)	۲
Querschnitt	RND 20	
Querschnitt gedreht		
Material	S235 (Standard)	-
Stabliste Diagonalen	zur Tabelle 🔠	3

Belastung

Über die Buttons können die jeweiligen Eingabedialoge aufgerufen werden.

Randbedingungen

Gebäude-/ Lastparameter	-		
Lage über OK Gelände	Die Höhe des Aussteifungsverbandes über der Oberkante des Gelände – der Windstaudruck wird für diese Höhe ermittelt.		
Binder	Anzahl der Binder im	Gebäude.	
Verbände	Anzahl der zusammenwirkenden Aussteifungsverbände		
Einflusshöhe	Die Einflusshöhe für Aussteifungsebene. I wird mit diesem Wert Gebäude-/Lastparameter	den Windar Der ermitte t multiplizie	ngriff auf die Ite Winddruck ert.
	Randbedingungen		0
	Lage über OK Gelände	[m]	3,00
	Binder		5
	Binderabstand	[m]	5,00
	Gebäudelänge	[m]	20,00
	Verbände		1

Eigenschaften	Т
Grundparameter ⊕ System	۹ 🕲
Belastung	
Ausgabe	

Randbedingungen				0
Gebäude-/ Lastparameter			[Z
Wind				Z
Verteilung der Windlast als		Gleichlast		•
Windsog am Untergurt				
Stabilisierende Ersatzkräfte	e.			0
Gurtkraft N	d	[kN]	250,	0 📝
Vorverformung I	/			500
Verteilung als		Knotenlasten(Pet	ersen) -
Lastfälle				0
Standard-Lastfälle		zur Tabelle	誯	2
Zusatz-Lastfälle		zur Tabelle	2	3
benutzerdef. Einwirkungen	ń.			0
		Bearbeiten	[2
Lastfallsteuerung				0
Lastfall aktiv				+
Lastfallsteuerung		Hinweis		Z
Bemerkungen				0
zu den Einwirkungen			Ī	1

Wind

Hier wählen Sie aus einer Liste Bundesland und Gemeinde und damit die entsprechende Windzone sowie die Höhe über NormalNull.

Einflusshöhe

Sie können diese Werte jedoch auch selbst vorgeben, indem Sie die Option Gemeindeauswahl deaktivieren.

Siehe auch Dokument Wind-Schneelasten-PLUS

Auswahl/Eingabe von <u>Windzone</u>, <u>Geländekategorie</u>, <u>Basiswindgeschwindigkeit</u> - der Anzeigewert qb0 resultiert aus der Basiswindgeschwindigkeit.

Geländeneigung H/Lu

Wert H/Lu in Strömungsrichtung mit H als Höhe des Anstiegs und Lu als Anstiegslänge, siehe auch EN 1991-1-4, A.3 (1). An isolierten Bergen, Bergketten oder Felsen und Böschungen ergeben sich unterschiedliche Windgeschwindigkeiten aus der Geländeneigung.

Eingabe der Randbedingungen zur Ermittlung der Windlasten

Gemeinde	Wind	Geometrie	Windlasten	
Wind Gru	indwert	e		0
Lastnorm \	Wind		DIN EN 1991-	1-4:2010 *
Windzone			1	+
Geländeka	tegorie		Kategorie II	
Basiswindg	geschwin	ndigkeit vbl) [m/s]	22,50
Basisgesch	nwindigk	eitsdruck qb) [kN/m²]	0,32
Wind Bei	werte			0
Geländene	eigung H	/Lu ph	i.	0,000
Orographie	faktor		5	1,000
Topograph	niebeiwer	t co	5	1,000
Windlast				0
Geschwing	digkeitsd	ruck (h=0.0)	[kN/m ²]	0.54

Orographiefaktor

Faktor nach EN 1991-1-4, Bild A.2 für Klippen oder Geländesprünge oder A.3 für Kuppen und Hügelkämme, bezogen auf die effektive Länge Le der luvseitigen Steigung.

[m]

1,50

Topographiebeiwert

Anzeige des Beiwerts nach EN 1991-1-4, 4.3.3. Dort, wo die Topographie (z.B. Berge, Klippen etc.) die Windgeschwindigkeit um mehr als 5 % erhöht, ist die Vergrößerung durch den Topographiebeiwert *co* zu berücksichtigen.

Geschwindigkeitsdruck (h=0)

Der Windstaudruck bei der Höhe 0.0 m kann zur Weiterrechnung modifiziert werden.

Stabilisierende Ersatzkräfte

Gurtkraft	Aus Nd werden die Aussteifungslasten mit	Stabilisierende Ersatzkräfte				
	dem Verfahren nach [Petersen] oder nach	Gurtkraft	Nd	[kN]		250,0 📝
	DIN EN 1993-1-1, 5.3.3 berechnet. Die Normalkraft im Curt kann bier direkt	Vorverformung	L/			500
	angegeben werden oder nach Klick auf den	Verteilung als		Knotenlaster	n(Petersen) [
	Editierbutton wirden oder hach klick auf den und <i>Md</i> im Riegel vom Programm berechnet	Lastfälle werden.		Knotenlaster EN1993-1-1	n(Petersen) (Gleichlast)	- W
	<i>Nd</i> ist hier die vorhandene Normalkraft im Bi <i>Md</i> ist das vorhandene Moment im Binder	nder (Achse).				
	zur Berechnung der Gurtkraft.	Eigenschaften		?	×	
		Berechnung Gurtkraft				
Vorverformung I/500 Anzeige der Imperfektion der abgestützten		Gurtkraft		[kN]		705,8
Ũ	Binder.	Nd im Riegel		[kN]		50,0
		Md im Riegel		[kNm]		250
Verteilung als	Die Windlast kann wahlweise als Gleichlast [EN 1993-1-1] oder Knotenlasten [Petersen] angesetzt werden. Standardmäßig werden Winddruck und Windsog am Obergurt angesetzt.	Gibt das vorhandene Moment im Riegel als Bemessungs an (zur Berechnung der Gurtkraft) OK Abbrechen				ngsweit

Benutzerdefinierte Einwirkungen

In einem separaten Dialog können <u>benutzerdefinierte Einwirkungen</u> erstellt werden.

Name	ld Allgemeines			
*Ersatzkräfte	501 Name			Frsatzkräft
	Einwirkungsart		Nutzlast	
	KLED			
	Kombinations	beiwerte		0
	Kombinationsbe	iwert ψ0		1,00
	Kombinationsbe	iwert ψ1		1.00
	Kombinationsbe	iwert ψ2		1,00
	Grenzzustand	Tragfähigkeit (STR)		6
	oberer TSB	yF.sup		1.00
	Grenzzustand	Gleichgewichtsverlu	ist (EQU)	0
	oberer TSB	yF,sup		1.00
	Grenzzustand	Baugrundtragfähigk	eit (GEO)	0
	oberer TSB	γF,sup		1.00

Lastfälle

Standard-Lastfälle

Die vom Programm generierten Lastfälle Wind auf Giebel und Ersatzkräfte sind Standardlastfälle. Sie werden vom Programm aus den Angaben zu System, Randbedingungen und der Gurtnormalkraft generiert und sind nicht editierbar, können aber über "Lastfall aktiv" auch deaktiviert werden.

Zusatz-Lastfälle

Zusätzliche Lastfälle werden in der Tabelle angelegt. Lasten können in Tabelle und Grafik eingegeben und editiert werden. Über den "+"-Button erzeugen Sie eine neue Tabellenzeile. Lastfälle können als Vorlage kopiert werden und über den "Bearbeiten"-Button geändert werden.

Lastfälle	0
Standard-Lastfälle	zur Tabelle 🔡 楶
Zusatz-Lastfälle	zur Tabelle 🗃 🗐
benutzerdef. Einwirkun	gen 🙆
	Bearbeiten 📝
Lastfallsteuerung	0
Lastfall aktiv	
Lastfallsteuerung	
Bemerkungen	Alle Standardlastfälle aus Alle Standardlastfälle an
zu den Einwirkungen	Alle Windlastfälle an
	Alle Zusatzlastfälle aus Alle Zusatzlastfälle an

ital	oliste Binder	Stabliste Pfosten	Stabliste Diagona	len	i jā	Standard-Lastfälle		Zusatz-Lastfälle	×
	Bezeichnung	Einwirku	ng Al	t	Aktiv	Kopiere Lasten aus Las	tfall	Lasten	2
1	Zusatz-Lastfall	stândig		0			•	Bearbeit	4
						 Wind auf Giebel Ersatzkräfte			彊

Bemessung

Klicken Sie auf den Button "Berechnen". Nach der Berechnung werden die Ausnutzungsgrade im Grafikfenster angezeigt.

Ausgabe

Über das Register Ergebnisse (oben) können Sie die einzelnen Ergebnisgrafiken anschauen.

Über den Menüpunkt Ausgabe können Sie den Ausgabeumfang durch Markieren der gewünschten Optionen definieren.

Das Ausgabedokument rufen Sie durch Klick auf das Register Dokument (über der Grafik) auf.

Siehe Dokument Ausgabe und Drucken.

Eigenschaften	Ф
Grundparameter	۹ 🔕
Belastung	
Ausgabe	

Allgemein	0
Kurzdruck	\checkmark
Legenden	
System	0
Systemgrafik 2D	\checkmark
Systemgrafik 3D	
Erzwinge Maßstab	
Lasten	0
Einwirkungen	\checkmark
Lastfallgrafiken	Details (2)
Ergebnisse	0
Auflagerkräfte - charakteristisch je Lastfall	\checkmark
Auflagerkräfte - Bemessungswerte	
Ergebnisgrafiken	Details (1)
Ergebnisschnittgrößen in Tabellen	Details (1)