

Verification of Reinforced Concrete Cross-Sections B2+

Table of contents

Application options	3
Standards	3
Calculation bases	4
Input – general operating instructions	5
Wizard/Assistant	5
Graphic input	5
Remarks	5
Basic parameters	6
Design standard and material	6
Durability	8
System	9
Effect of actions	9
Cross-section	9
Geometry	9
Reinforcement layer	10
Reinforcement type	10
Cast-in-place concrete addition	11
Reinforcement layout manuallyl	12
Loading	13
Design situation	13
Loading (input for the design)	13
Design	14
Design type / reinforcement distribution	14
Fire protection design	14
Reinforcement	15
Options	16
Bending design options	16
Shear design options	17
Effective stiffness options	18
Crack width verification options	18
Other options	18
Output / results	19
Results	20
Import/export	20
Literature	20

Further relevant information and descriptions can be found in the documentation:

Schöck Combar Analysis on the reinforced concrete cross-section Durability - creep and shrinkage

Basic Documentation – Overview

In addition to the individual program manuals, you will find basic explanations on the operation of the programs on our homepage <u>www.frilo.com</u> in the Campus-download-section.

Application options

Reinforced concrete cross-sections can be dimensioned with the FRILO B2+ program. Table 1 provides an overview of the available cross-section types and the associated possible scope of processing:

Action effect	Cross-section	Verifications					
		Bending + axial force	Shear force + torsion	Shear joint *1)	effective stiffness ULS/SLS	Stress steel/concrete	Crack width
	Rectangle	~	~	✓	~	\checkmark	~
Uniaxial	T-beams	✓	✓	✓	~	√	~
	Layers	~	~	✓	✓	√	~
	Rectangle	~	√ *2)	-	\checkmark	√	-
Uni- or biaxial	Rectangular hollow box	~	-	-	~	√	-
	Circle	~	√ *3)	-	\checkmark	√	~
	Annulus	~	-	-	\checkmark	\checkmark	-

*1) Optionally, a cast-in-place concrete addition can be entered for uniaxially loaded cross-sections

*2) only for DIN EN 1992-1-1

*3) only uniaxial shear force

Table. 1: Action effect types, cross-section types and verifications available in B2+

Standards

The design is possible according to

- Original Eurocode and according to
- national annexes of Germany, Austria, Great Britain and Poland.

The standards available in B2+ and the associated abbreviations used in this document are listed below:

	Abbreviation	Standard
Original Eurocode	EN	EN 1992-1-1:2004 /A1:2014 and EN 1992-1-2:2004 /AC:2008
Germany	NA-D	DIN EN 1992-1-1/NA/A1:2015-12 DIN EN 1992-1-1/NA:2013-04 DIN 1992-1-1/NA:2011-01 with DIN 1992-1-1/NA Ber 1:2012-06
Austria	NA-A	ÖNORM B 1992-1-1:2018-01 ÖNORM B 1992-1-1:2011-12
Great Britain	NA-GB	NA+A2:2014 to BS EN 1992-1-1:2004+A1:2014 (2015-07)
Poland	NA-PL	PN EN 1992-1-1:2008/NA:2010

If parameters in the national annexes deviate from the original Eurocode, this is indicated in this document with the following abbreviation:

NDP – parameter definable in the National Annex

Otherwise, the statements of the original Eurocode apply in the same way to all national annexes.

Calculation bases

Explanations of the calculation bases and verifications can be found in the document "<u>Analysis on the reinforced concrete cross-section</u>".

Input – general operating instructions

Wizard/Assistant

When the program starts, the Wizard/Assistant window appears automatically.

The most important key data of the system can be entered here quickly, which can then be edited in the input area and/or in the <u>interactive graphic interface</u>.

Self-defined items can also be imported here as templates. Saving as a template is done via > File > Save as > Select the option "Use as template".

Create new stru	ctura	al item		
Assistant		Templates	Open	
Code and Material				
Concrete quality	FS	C 25/30	•	i
Steel quality		B500A	•	5
Action effect				
Action effect type		1-axial	•	
Cross-section				
Cross section type		Rectangle	*	
Geometry		-		
Width	b	[cm]	30.0	
Height	h	[cm]	40.0	
reinforcement layer				
above	dob	[cm]	5.0	
pelow	dun	[cm]	5.0	
Default cutting forces				
Axial force	Nx,Ed	[kN]	-50.0	5
Moment N	Ay, Ed	[kNm]	150.00	
Shear force	Vz,Ed	[kN]	125.0	
Concrete quality to be impl	ement	ed in dimensioning	(E5 for further func	30 J
contracte quality to be impr	carette	co ar omenatoring		
Always use the Assistant	to creat	te a new item		OK

The entries in the program can then be easily supplemented and processed further.

See also basic operating instructions-plus

Graphic input

The values and control parameters are usually entered in the menu on the left-hand side of the screen window. The interactive input option in the graphic on the right side of the window is recommended for quick changes to a cross-section that has already been defined.

See also "Interactive-Graphic - Input options" in basic operating instructions-plus.

Remarks

You can enter your own comments in the individual input sections - see also "Remarks editor" in <u>basic operating instructions-plus</u>.

Basic parameters

Design standard and material

First select the desired design standard.

Depending on the selected standard, the corresponding material grades for the concrete (cross-section and optional cast-in-place concrete addition) and reinforcing steel (longitudinal and stirrup reinforcement) are listed for selection.

Alternatively, you can define the concrete material values yourself (see Concrete – user-defined below).

Concrete quality

C12/15 C90/105	standard concrete according to EN, Tab. 3.1
C100/115	for NA-D and NA-GB normal concrete according to EN, Tab. 3.1 + NDP
LC12/13 LC80/88	lightweight concrete according to EN, Tab. 11.3.

Properties	Ф
Basic parameter	90
Loading	
Output	

Code and Materia	il		0
Design code		DIN EN 1992:2015	-
Concrete quality F5		C 25/30	-
Steel quality		B500A	+
Steel quality stimup		B500A	+
Precast member			\checkmark
Precast - characteristics		γC = 1.50, γS = 1.15	1
Durability			0
Durability		XC1/W0	1

Note: For high-strength concrete (> C50/60), it may be useful to activate the "<u>Design with net Ac</u>" option.

The selected class of concrete should meet the requirements of durability. If a lower concrete class is selected, a program message appears.

Concrete – user-defined

A dialog is called up via the F5 key or the "F5" button in the "Concrete quality" input field.

There are three variants available for determining the concrete parameters:

According to EC2 formulas	normal and lightweight concrete with any $f_{\mbox{\scriptsize ck}}\mbox{-value}$
	The concrete parameters are determined according to the formulas in EN, Table 3.1 + NDP or EN, Table 11.3.1 + NDP
According to EC2 table 3.1	standardized normal and lightweight concrete
	The concrete parameters are taken from EN, Table 3.1 + NDP or EN, Table 11.3.1 + NDP.

For an explanation of the partial safety factor γ_c and the factor for the long-term effect \mathbf{a}_{cc} , see the chapter "<u>Design bases</u>" in the document "Analysis on the reinforced concrete cross-section".

Free input

all concrete parameters are freely definable

In order to control the lightweight concrete parameters, it is necessary to enter the raw density and, if necessary, the information "No natural sand" (control ɛlc1 according to EN, Tab. 11.3.1).

			<u> </u>		×
And the second se					
the second s	General				
and the second	Character. cylinder compressive strength	fck	[N/mm²]		25.0
	Cube strength fck,cu	ube	[N/mm ²]		30.0
the state was a second	Shortname			C2	5/30-1
For a user-defined concrete, characteristic values	Light-weight concrete				
can be determined using the EC2 formulas or from	No natural sand				
abulated values. Free entry is also possible.	Dry bulk density	ρ	[kg/m³]		250
	Characteristic values				
	Determine characteristic values		Acc. to EC	2 formu	las
$f_{cd} = f_{ck} \cdot \alpha_{cc} / \gamma_c$	Long-term effect factor c	acc	Acc. to EC	2 formu	ilas
$\sigma = f_{cd} \cdot \left(1 - \left(1 - \frac{\varepsilon}{\varepsilon_{c2}}\right)^n\right)$	Partial safety factor	γc	According Free input	to EC2	table
$f_c = f_{cm}/\gamma_c$	Design value of compressive strength	fcd	[N/mm ²]		14.1
$a = f$ $k \cdot n - n^2$	Peak compression a	ec2	[‰]		2.00
$b = J_c \cdot \frac{1}{1 + (k - 2) \cdot n}$	Fracture compression ac	cu2	[‰]		3.50
1	Exponent	n			2
f_c	Peak compressive strength	fcm	[N/mm ²]		22.0
	Peak compression a	ec1	[‰]		2.06
Ica	Fracture compression ac	cu1	[‰]		3.50
	Medium tensile strength for	ctm	[N/mm ²]		2.5
	Young's modulus E	Cm	[N/mm ²]		3147

Tip:

Information about the individual parameters can be displayed as tooltips.

Steel quality

3.2 and EN, Appendix C as well as national regulations
B220(A), B420(A), B500(A), B500(B), B500(C), B550(A), B550(B), B600(A)
B500A and B500B according to DIN 488 (2009) also BSt 420 S(A)
B500A, B550A, B600A, B550B
B500A, B500B, B500C, grade 460 TH, grade 460 YH, grade 485 WH, grade 485 WN
B500(A), B500(B), B500(SP)
A (normal), B (high), C (very high)

Steel grade - user-defined

Alternatively, user-defined parameters can be optionally defined via a bilinear or linear work line in a dialog using the F5 key or the "F5" button in the input field for the steel grade of the longitudinal and stirrup reinforcement (see figure) (New, New from template, Edit, Delete, Save as template).

Code and Material		0	req. Asu / avail. Asu = 11.
Design code	EN 1992:2015	•	Load combination 1
Concrete quality	C 25/30	•	
Steel quality	F5. B500A		User defined material
Steel quality stimup	B500A	W.	* New
Precast member			*≣ Load
Durability		0	Mil Edit
Durability	XC1/W0	1	× Delete
			Bave Save
			COMBAR
			* New
			🐚 Edit
			Mill Delete

Schöck Combar®

The F5 key or the "F5" button in the "Steel grade" input field of the longitudinal and stirrup reinforcement opens a dialog in which the reinforcement can be defined (COMBAR: New, Edit, Delete).

After defining a Combar reinforcement, additional options are displayed:

Short-term exposure Indicates whether Combar reinforcement should be calculated for a short-term loading of 5 years. Approval in individual cases required.

Shear force analysis ...

Specifies whether the calculated shear reinforcement should be considered in the shear force analysis. Approval in individual cases required.

Steel quality	F5	Combar Längsbewehrung 1	•
Steel quality stimup		B500A	•
Combar: Short-term exposure			
Combar: Shear force analysis with shear reinforceme	ent		

For further information on entering and calculating Schöck Combar®, see the manual "Schöck Combar®".

Precast unit - Partial safety factors for concrete and reinforcing steel

For precast units that are subject to special quality control, reduced partial safety factors can be taken into account in accordance with EN, Appendix A. After activating the "Precast member" option, the dialog for selecting precast part-specific partial safety factors can be opened.

Dialog	ue for material safety factors	×
concrete	rebar longitudinal	
Quali	ty control dimensions acc. to A.2.1	
Redu	iced or measured geometric data acc. to A2.2(1)	
Coeff	icient of variation strength < 10 $\%$ nach A2.2(2)	
Fixed	or guaranteed concrete strengt acc. to A2.3(1)	
yc =	1,50	
	OK Cancel	Apply

Durability

Durability, creep and shrinkage

The button *constantiation* opens a dialog in which the requirements for the durability and the creep and shrinkage behavior of the component can be defined.

→ See document Durability, creep rate and shrinkage

д

System

Effect of actions

Choice between uni- and biaxial action effect.

- 1-axial: rectangle, T-beam, layer cross-section
- 2-axial: rectangle/hollow box, circle/annulus

See also application options, Table 1.

Cross-section

Cross-section type selection - see also "Geometry".

1-axial

rectangle

T-beam

layers cross-section

2-axial

circle or annulus rectangle or rectangle with recess

Geometry

Depending on the selected cross-section type, the appropriate parameters (width, height ...) are displayed for input.

Rectangle 1-axial / T-beam

b width (≥ 10 cm)

height (≥ 10 cm) h

Layers cross-section

Any simply symmetrical cross-sections can be entered. Each layer has a distance from the top edge of the member and a width. The distance of the first layer from the upper edge of the member is assigned the value "0".

The layers are entered in tabular form via the "Input layer cross-section" tab below the graphic:

Use the icon ^{La}to create a new entry (a new table row) for each shift. See also table input in the operating basics.

r			-
	Distance from the top edge	Layer width	2
	[cm]	[cm]	
1	0.0	80.0	4
2	15.0	80.0	19

Tip: Edit the dimensions directly in the interactive graphic at the marking points (fig. right).

• •	
	45,00
· (*	-
1500.00	+
1500,000 d ² 0	45,00
erf. Asu = 26,049 cm ²	15,00
erf. asw.gesamt = 19,79 cm²/m	-+++-

Basic parameter System Loading Design Output			۹ 🕲
Effect of actions			0
Stress type		1-axis	-
Cross-section			0
Cross section type		Rectangle	•
Geometry			0
Width	b	[cm]	100.0
Height	h	[cm]	18.0
reinforcement layer			0
above	dob	[cm]	5.0
below	dun	[cm]	5.0
Cast-in-place concrete addition			0
with cast-in-place concrete addition			\checkmark
Concrete quality in-situ complement	F5	C 25/30	*
Thickness of cast-in-place concrete addi	tion hAdd	[cm]	10.0
Width of the cast-in-place joint	bJoint	[cm]	100.0
Joint formation		rough	•
Axial force perpendicular to the joint	nEd	[kN/m]	0.00
Type of shear reinforcement		no lattice gir	rder 🔹
Notes on the system			0
to the system			1

Properties

---- Basic parameter

Circle / annulus

- da outer diameter (\geq 10 cm)
- di inner diameter (\leq da 12 cm, full circle: di = 0)

Rectangle 2-axial

- b width (\geq 10 cm)
- h height (≥ 10 cm)
- bi width of the recess ($\leq b 10$ cm, full cross-section: bi = 0)
- hi height of the recess ($\leq h 10$ cm, full cross-section: hi = 0)

Reinforcement layer

Rectangle 1-axial / T-beam / layered cross-section

- dob Distance of the center of gravity of the upper reinforcement from the upper edge of the cross-section (in the case of a cast-in-place concrete addition: upper edge of the cast-in-place concrete addition).
- dun Distance of the center of gravity of the lower reinforcement from the lower cross-section edge.

Circular cross-section

d1 Distance of the center of gravity of the reinforcement from the outer edge

Rectangular cross-section, 2-axial

- d1 Distance of the center of gravity of the upper or lower reinforcement from the upper or lower edge of the cross-section.
- b1 Distance of the center of gravity of the reinforcement on the right or left side from the right or left edge of the cross-section

Reinforcement type

For 2-axial loading, the design of rectangular and circular crosssections is possible considering the exact reinforcement arrangement (integration of the reinforcement dialog).

Fixed reinforcement - rectangular cross-section, 2-axis

As corner distributed	The total reinforcement content is arranged in the corners of the cross-section according to the selected ratio (see selection list on the right). The arrangement is done individually for each load combination. This means that the strand can differ between the load	Reinforcement distribution Notes on the system to the system position of the max d combinations.	As distributed over comers 4 * 1/4 As distributed over comers 4 * 1/4 As distributed over comers 3 * 1/6 + 1/2 As distributed over comers 3 * 1/8 + 5/8 As distributed over comers 3 * 1/10 + 7/10 As circumferentially distributed As side spread Asu = Aso As distributed Asu = Aso As circumferentially distributed respectively As/4 imum reinforcement
As circumferentially distributed	Uniform reinforcement content ov (u at a distance of b1/d1 from the	er the circumferenc member surface).	e u
As laterally distributed Asu = Aso	Uniform reinforcement content ov (I at a distance of d1 from the top	er the length I /bottom of the mem	uber with I = b – 2 b1).
As laterally distributed Asle = Asri	Uniform reinforcement content ov (I at a distance of b1 from the me	ver the length I mber side with I = h	— 2 d1).

Reinforcement type

Reinforcement distribution

Reinforcement type

distributed or permanently placed reinforcement

distributed or permanently placed reinforc

Freely defined point reinforcement

As circumferentially distributed in each As/4 Uniform total reinforcement content per member side.

Fixed reinforcement - circular cross-section, 2-axis

As circumferentially distributed Uniform reinforcement content over the circumference u (u at a distance of d1 from the member surface).

Freely defined point reinforcement

Click on the edit button to open the reinforcement dialog for entering the point reinforcement.

Cast-in-place concrete addition

Cast-in-place concre uniaxial cross-section	ete additions can be entered on types rectangular. T-beau	d for the m and	Cast-in-place concrete addition			0
layered. After activa	ting the option "with cast-ir	n-place	with cast-in-place concrete addition		- Automor States in	\sim
concrete addition" y	ou can define the propertie	s of the	Concrete quality in-situ complement	F5	C 25/30	•
cast-in-place concre	ete addition.		Thickness of cast-in-place concrete add	ition hAdd	[cm]	10.0
Concrete quality	Selection of the concrete	quality for	Width of the cast-in-place joint	bJoint	[cm]	100.0
	normal and lightweight co	ncrete of	Joint formation		rough	-
	the cast-in-place concrete	addition	Axial force perpendicular to the joint	nEd	[kN/m]	0.00
	for semi-precast units. In	another	Type of shear reinforcement		no lattice girder	•
	dialog, user-defined chara	cteristic	Notes on the system		only diagonals (E)	
	values can be determined	using the	to the system		with posts and diago	nals (EQ)
	formulas of EC2 or from t possible. A name can be a	abulated valu assigned and	ues by pressing the F5 key. Free I the material can be saved.	entry is a	also	
hAdd	thickness (height) of the i	n-situ concre	te layer			
	rectangular cross section	: 3cm ≤	h _{Add} ≤ h - 5 cm			
	T-beam cross-section:	h _{Add} ≤	do or if do = 0, then $h_{Add} \le h - du$			
	layer cross-section:	h _{Add} ≤	thickness of the 1st layer			
bJoint	Width of the cast-in-place By default, the width of th A smaller joint width can prefabricated formwork).	joint. e cross-secti be defined m	on at the level of the joint is set anually (e.g. if the width is redu	as the jo ced by a	int width.	
Joint formation	Surface categories accore	ding to EN, 6.	2.5 (2). See NA for additional ru	iles.		
	Very smooth	Concreted against steel, plastic or smooth wooden formwork.				
	Smooth	Surface stripped or manufactured in the sliding or extruder process or untreated.				
	Rough	Grain structure \ge 3 mm exposed (generated by raking with a tine spacing of approx. 40 mm, exposing the aggregates or other methods that bring about an equivalent behavior).				
	Interlocked	Design of the	e interlock according to EN, Figu	ure 6.9.		
nEd	Lower design value of the pressure.	axial force p	perpendicular to the joint per uni	t length, i	negative	
	In the case of an beam (t-beam cross-section with slab below) and $n_{Ed} = 0$, it is assumed to be on the safe side that the joint is vertically under tension and therefore the adhesive bond component of the joint load-bearing capacity must not be taken into account ($v_{Rdi0} = 0 \text{ kN/m}^2$).					

Type of shear reinforcementLattice girders in element slabs as joint reinforcement for NA-D.When designing according to NA-D, lattice girders can be selected as joint
reinforcement for slabs (the rectangular cross-section must be b/h ≥ 5 or the
"Shear design like slab" option is activated). The design is based on the
information provided by several general building authority approvals for lattice
girders (see /67/ to /72/).Explanations of the verification can be found in the chapter "Shear design for
element slabs with lattice girders" of the document "Analysis on reinforced
concrete cross-sections".

Reinforcement layout manuallyl

Use the reinforcement icon to open the reinforcement layout dialog for creating or editing the reinforcement. Here you enter the reinforcement parameters such as longitudinal and transverse reinforcement, distance/position, etc.

automatic reinforcement/arrangement pattern

Opens the dialog for selecting the reinforcement arrangement – the selection options are graphically self-explanatory.

In the right dialog area, select the diameters of the longitudinal bars and stirrups as well as the maximum grain size.

Req. As and avail. As are displayed.

Reinforcement layer

Click here to select the reinforcement row to be edited. You can add bars using the "+" or "-" symbols (see tooltip). You can increase/decrease the diameter by right-clicking on a bar.

Loading

Design situation

Selection of the design situation:

- permanent/temporary
- extraordinary
- earthquake

Through the selection, the partial material safety factors are assigned according to the selected design situation (see chapter "<u>Design bases</u>" in the document "Analysis on reinforced concrete cross-sections").

Loading (input for the design)

Depending on the type of action effect selected, the internal force components for uniaxial or biaxial action effect are activated. Each cutting force combination can be individually activated or deactivated ("Calculate LC" option).

Input of the internal forces via the "Load combinations design / Ultimate Limit State Verification" tab (below the graphic) or alternatively directly in the left menu tree - see <u>Table input</u> in the operating basics.

Use the icon is to create a new entry (a new table row) for each shift.

Internal forces from design LC

The following design loads are used in the bending, shear force, shear joint and torsion design.

Nx,Ed	Design of axial force (compressive force negative)
My,Ed	Design moment about y-axis
Mz,Ed	Design moment about z-axis
Vy,Ed	Design shear force in the y-direction
Vz,Ed	Design shear force in the z-direction
Tx,Ed	Design of the torsional moment

Internal forces from rare LC

The following design loads are used for the stress analysis in the serviceability limit state.

Nx,rareLC	Axial force from rare load combination (negative compressive force)
My,rareLC	Moment about the y-axis from rare load combination
Mz,rareLC	Moment about the z-axis from rare load combination

Internal forces from quasi-permanent LC (= internal forces from crack-LC)

The following design loads are used for the stress analysis in the serviceability limit state and for the crack width analysis.

Nx,quaspermLC	Axial force from quasi-permanent load combination (negative compressive force)
My,quaspermLC	Moment about the y-axis from quasi-permanent load combination
Mz,quaspermLC	Moment about the z-axis from quasi-permanent load combination

Design situa	ation		0
Design situati	ion	permanent/temporary	•
Load			0
Load comb	inations design	🕚 1/1 🔘 👍 🗙 🛅 🕯	1 🌶
Internal for	ces from design	LC	0
Axial force	Nx,Ed	[kN]	-50.0
Moment	My,Ed	[kNm]	150.00
Shear force	Vz,Ed	[kN]	125.0
Moment due	to torsion Tx,Ed	[kNm]	0.00
Cutting for	es from rare LC		0
Axial force	Nx,rareLC	[kN]	0.0
Moment	My,rareLC	[kNm]	0.00
Internal for	ces from quasi-j	permanent LC (= Internal force	s from
Axial force	Nx,quaspermLC	[kN]	0.0
Moment	My,quaspermLC	[kNm]	0.00
Miscellaneo	ous		0
Calculate LC			\square
Remarks			0
to the effe	cts		1

Design

Design type / reinforcement distribution

For uniaxially stressed cross-sections

kd-procedure See also design using the kd-method in the document "Analysis on reinforced concrete cross-sections".

Reinforcement distribution

As2 / As1 = 1 / 3 / 5 / 7 The higher reinforcement content is arranged on the member side that is subject to greater tensile stress. See also Design for a given reinforcement ratio in the document "Analysis on the reinforced concrete crosssection".

For biaxially stressed cross-sections

See chapter Reinforcement type.

Fire protection design

The calculation is only available with a licensed additional module B2-POLY (polygonal addition and temperature analysis to B2)!

Select the option to display the corresponding input fields.

The load-bearing capacity in case of fire can be verified for the cross-section types rectangle and circle with general point reinforcement. The non-linear temperaturedependent material behavior is considered, whereby the temperature distribution within the cross-section is determined as a function of the time of fire exposure using thermal FEM analysis.

	Calcation from D20 to 240 on from on calfing the from	Aggregates	CO
Fire resistance class	Selection from R30 to 240 of free specification (the free	Reinforcing steel type	co
	specification of the time of the exposure is done in the temperature analysis dialog)	Temperature surcharge	[*]
		Temperature analysis	
Concrete aggregate	Influences the thermal expansion (/42/ Figure 3.1) and the stress-strain curve of the concrete (/42/ Figure 3.5)	Remarks	
		to the results	
	consideration of more favorable limestone-containing aggregates, the explicitly selected by the user.	egates must be	
Reinforcing steel type	Influences the stress-strain curve of the steel (/42/ Figure 3 Default: cold-formed steel; the favourable hot-rolled steel m selected by the user.	3.3). nust be explicitly	
Temperature development	The defined temperature development is added to the calculate each point in the cross-section. Note: Not required for temperature analysis with the FEM protocome the error that occurs when transferring the temperature sect cross-sections with $h = 30 \text{ cm}$ to larger or smaller cross-sections or negative ($h > 30 \text{ cm}$) temperature development must	ulated temperature ogram TA. To reduc tions determined on tions, a positive (h < be entered.	at e : 30
Temperature analysis	Opens the dialog for FEM-based temperature analysis. See <u>Temperature Analysis TA</u> .	FRILO program	

Fire protection design		0
Fire protection design		\checkmark
Fire resistance class	R60	•
Aggregates	containing quartzite	•
Reinforcing steel type	cold-formed	•
Temperature surcharge	["]	0.0
Temperature analysis		1
Remarks		0
to the results		1

Reinforcement

Maximum required longitudinal reinforcement

Display of the maximum values of the required total longitudinal reinforcement of all calculated internal force combinations from the <u>Design LC</u> (moment and axial force action effect).

Available longitudinal reinforcement

By default, the existing longitudinal reinforcement is set according to the maximum required longitudinal reinforcement. If the existing reinforcement is defined by the user, there is no longer an automatic adjustment.

Maximum required shear and torsional reinforcement

Display of the maximum values of the required shear reinforcement of all calculated internal force combinations from the design LC (shear and torsional action effect).

The longitudinal reinforcement max AsIT must be considered in addition to the

longitudinal reinforcement from the bending/axial force action effect (display under "Maximum required longitudinal reinforcement") in the cross-section.

Properties			Ф
Basic p System Loadin Design Op Op	narameter g nforcement tions	D	۹ 🔊
max. requ	ired longitudinal reinf	orcement	t (fror
required	max Aso	[cm ²]	0.3
required	max Asu	[cm ²]	11.5
Existing lo	ngitudinal reinforcem	ent (for a	II LC)
	1.23	1	0.0
available	Aso	[Cm*]	0.3
available available	Aso Asu	[cm ⁴]	0.3 11.5
available available max. requ	Aso Asu ired shear and torsion	[cm²] [cm²] al load (fr	0.3 11.5 rom a
available available max. requ required	Aso Asu ired shear and torsion max AswV+T+ joint	[cm ²] [cm ²] al load (fr [cm ² /m]	0.3 11.5 rom al 4.37

џ

0

~

~

~

 \square

~

0

+

~

~

0

[N/mm²] 2.56

1.00

ULS

45.0

90

Options

When an option is marked (tick) the following applies:

Bending design options

With minimum eccentricity

A minimum eccentricity according to EN, Section 6.1 (4) is considered.

With minimum longitudinal reinforcement Considers the minimum reinforcement for

- Bending components according to EN, Section 9.2.1.1 or NA-D, Section 9.2.1.1 (option for uniaxially stressed crosssections),
- Compression members (supports) according to EN, Section 9.5.2(2) or NA-D, Section 9.5.2(2) or NA-A, Section 12.5.3 and
- Compression members (walls) according to EN, Section 9.6.2 (1) or NA-D, Section 9.6.2(1).

For explanations, see the chapter "Minimum reinforcement for components subjected to bending loads" / "Minimum reinforcement for compression members" in the document "Analysis on reinforced concrete crosssections".

Design with net Ac

Only considers the compression zone area of the concrete. The pressure zone area displaced by the steel is not considered.

Note: When using high-strength concrete (> C50/60) and a high degree of reinforcement in the compression zone, it may make sense to set the "Design with net Ac" option (/66/ p.67).

additional limitation x/d

Assuming that the reinforcement is loaded in the ULS up to the yield point and the elongation at break of the concrete is reached at the same time, the height of the compression zone is limited

Properties

System

Loading

Output

Basic parameter

. reinforcement

Flexural design options

with minimum eccentricity

Rated with Net Ac

additional limit x/d

z/d user-defined

Strut angle

Shear design options

Shear design as for plate

Torsion with strut angle 45°

VRd,c according to Eq. 6.4

Options effective stiffness

σ-ε line concrete deformation

with creep and shrinkage

Factor kgeff

fcteff

fcteff user-defined

other options

Calculation of effective stiffness for

Crack width verification options

Represent the cutting forces as equal

Compression strut inclination under tension according to Eq. 6.7aDE

Reinf. position cv.l=nom c,l to limit the lever arm

Mean value of the building material strengths

Strut angle constant

with minimum longitudinal reinforcement

σ-ε line steel with horizontal top branch

 $x (x/d = \varepsilon_{cu} / (\varepsilon_{cu} - \varepsilon_{yd}))$. In order to ensure sufficient ductility, the pressure zone height must also be limited for linear-elastic calculations of continuous beams. The additional limitation according to EN 1992-1-1, Section 5.6.3.(2) can be selected here.

Compliance with the criterion is achieved by a correspondingly modified steel limit strain, from which pressure reinforcement is determined.

$\pmb{\sigma}{\textbf{-}}\pmb{\epsilon}$ line steel with horiz. upper branch

For the stress-strain curve of the rebar, neglect the slope of the top branch. For example, comparable results can be achieved with design tables.

Shear design options

z/d user-defined	The relative lever arm z lever arm calculated in carried out, $z = 0.9 \cdot d$ or additionally for NA-D	/d can be specified for the the bending design is used z < max (d – 2 nomc, d – 3	shear design. Otherwise, the . If no bending design has been 8 nomc).
Shear design like plate	The shear design is ind plate. Accordingly, the r Section 9.3.2 or NA-D, S	ependent of the cross-sect ninimum shear reinforcem Section 9.3.2 is considered	ional dimensions as with a ent for plates according to EN,
	For explanations, see the reinforced concrete cro	ne chapter " <u>Shear design</u> " ir ss-sections".	n the document "Analysis on
Strut angle constant	For the shear and torsic regardless of the loadir	on design, a constant strut ng condition.	inclination can be specified
	The option is used, for verification of the sheat inclination applicable to	example, for sections that a r force resistance but are to o the decisive section.	are not decisive for the b be calculated with the angle of
	Note: The limitations of chapter " <u>Shear design</u> " sections") are not check	the strut angle that apply to in the document "Analysis c and with the user-defined st	o the respective standards (see n reinforced concrete cross- rut inclination!
Torsion with strut angle 45°	Determines the torsion of 45° and adds this to 6.3.2 (2).	al reinforcement in a simpl the shear reinforcement du	fied manner with a strut angle $_{z,\text{Ed},\ }$, according to NA-D,
VRd,c according to Eq. 6.4	In the case of single-sp components without sh determined in the uncra f _{ctd} if the flexural tensile according to EN, Eq. 6.4	an, statically determined prear reinforcement, the she acked state on the basis of e stress is less than f _{ctd} . If t 4 determined.	restressed concrete ar force resistance, $V_{Rd,c}$ may be the concrete tensile strength he option is activated, $V_{Rd,c}$
Compression strut inclination	on under tension accord	ling to Eq. 6.7aDE	Option for NA-D.
	Also determines the str 6.7aDE. Compared to a usually results in more	ut inclination according to calculation with the simpli favorable design results.	DIN EN 1992-1-1 NA Eq. fied approach of cot θ = 1.0 this
Reinforcement layer cv.l = c	nom,I to limit the lever	arm Option for NA-D	
	According to NA-D to 6 $z < max (d - 2 c_v); d - 3$ corresponding concrete compression reinforcer chapter " <u>Basic paramet</u> the compression reinfo reinforcement.	2.3 (1) the lever arm shall c_{0} mm – $c_{v,l}$). When the ope cover $c_{nom,l}$ is used for the ment $c_{v,l}$. This can be set in ters"). Otherwise, $c_{v,l}$ is determined to the reement (d_{ob} or d_{un}) and the	be limited to tion is activated, the a laying measure of the the durability dialog (see rmined using the centroid of a diameter of the longitudinal
for concrete > C50 fck with	out reduction Option	on for NA-GB.	
	If the concrete shear st according to NA-GB $\rm f_{ck}$	rength is verified by a test, can also be considered wit	for concretes > C50/60 hout reduction.
increased fcd according to	PD 6687:2006 Optic	on for NA-GB.	
	According to PD 6687:2 considered for the verif	2006, an increased f _{cd} deter ication of the shear force le	mined with $\alpha_{cc} = 1.0$ may be boad bearing capacity.
Span reinforcement comple	te to support Option	on for NA-A.	
	Span reinforcement is a flatter strut angle can	carried out completely up to be used according to NA-A	o the support, which means that A, Section 6.2.3 (2).
Compression strut angle fo	o sd < fyk Optio	on for NA-A.	
	Limitation of the strut a	ngle according to NA-A, Se	ection 6.2.3 (2) for $\sigma_{sd} < f_{yk}$.

Effective stiffness options

with effective stiffness in ULS/SLS	The effective stiffness is determined using the internal forces in the ULS or using the internal forces from the quasi-permanent load combination in the SLS.
σ-ε line concrete deformation	If the option is activated, the effective stiffness is calculated with the stress-strain curve for the deformation calculation of the concrete according to EN, Figure 3.2 and 5.8.6 (3) with $f_c = f_{cd}$ and $k = E_{cm} / \gamma_{cE} \cdot \epsilon_{c1} / f_c (E_{cm}, \epsilon_{c1} and \epsilon_{c1u} according to Tab .3.1 or 11.3.1, \gamma_{cE} is NDP). Otherwise, the calculation is based on the parabola-rectangle diagram according to EN, Figure 3.3 and parameters according to EN, Table 3.1 or 11.3.1.$
Mean value of the building material st	rengths For the "Concrete deformation stress-strain curve" option, the determination of the effective stiffness can be calculated using the mean value of the building material strengths.
with creep and shrinkage	If the option is activated, creep and shrinkage are considered when determining the effective stiffness. Otherwise, the effects of creep and shrinkage are not considered. For explanations, see the chapter "Determination of the effective stiffness" in the document "Analysis on reinforced concrete cross-sections".
factor k φ eff	For the "with creep and shrinkage" option, the factor $k\phi_{eff}$ can be selected between 0.0 and 1.0. The $k\phi_{eff}$ value is included as a factor of ϕ_{eff} in the calculation of the effective stiffness.

Crack width verification options

(Options for uniaxially loaded cross-sections)

fcteff user-defined	The concrete tensile strength can be modified. The mean value of the concrete tensile strength f_{ctm} is defined as the standard value (strength after 28 days).
Effective plate width top / bottom	Option for T-beams
	The width of the effective zone of the tension reinforcement in the slabs of T-beams can be defined.
	An example for the calculation of the effective plate width can be found in /13/ p.145:
	$b_{eff,II}$ = 0.5 * $b_{eff,I}$ + 2 * c_{I} with c_{I} = $c_{nom,I}$ and $b_{eff,I}$ = bo or bu

Other options

Represent the internal forces as equal The internal forces are always displayed in the same size. Otherwise, the size displayed is determined in relation to the maximum value from all load combinations (LC lines).

0

 \checkmark

 \checkmark

 \checkmark

 \checkmark

90

Properties

. ⊕ · Design Output

Flexural design

Graphic flexural design

Shear / torsion design

Crack width verification

Effective stiffness

Stress proof

Layout Graphics

System Loading

Basic parameter

Durability, creep and shrinkage

Minimum longitudinal reinforcement

Output / results

You call up the output document by clicking on the Document tab (above the graphic).

Output profile

Here you specify the scope of the output. To do this, select the desired output options:

- Graphics (System)
- Durability, creep and shrinkage
- Bend design
- Minimum longitudinal reinforcement
- Shear design / Torsion design
- Effective stiffness
- Stress verification
- Crack width verification
- Legends (additional explanations for individual values)

See also Document Output and Printing.

Tip:

in the "Bookmarks" tab you can individually select and deselect individual chapters in the document.

Results

The utilization is shown in the graphic.

If verifications or geometric requirements are not met, the verification traffic light is colored red and a corresponding message is given. The non-compliance with requirements / verifications are marked accordingly in the printout.

In the "Results" tab, the cross-section, the reinforcement and the strain status of the set check and the selected load combination are displayed graphically.

nc and a set of the s		em* - B2+ Concrete	n* - B2+ Concrete Section (x64) 02/23B (R-2023-2/P0		
File St	art Resul	ts Help			
Design Effective (ULS) stiffness	Concrete stress rare LC (SLS)	Reinforcing steel stress rare LC (SLS)	Concrete stress quasi- permanent LC (SLS)	Crack verification (SLS)	Load combination1
		Display group	6		Selection of load combinations

100%

The following graphics can be displayed:

- Design values (ULS)
- Effective stiffness (ULS)
- Concrete stress from rare load combination (SLS)
- Reinforcing steel stress from rare load combination (SLS)
- Concrete stress from quasi-permanent load combination (SLS)
- Values of the crack width analysis (SLS)

Furthermore, the load combination for the design can be selected.

Import/export

Import and export functions can be accessed via the "File" tab at the top of the screen. The following file formats are available in B2+:

Import: FRILO XML

Export: FRILO XML, Word, PDF

Literature

See the document "Analysis of reinforced concrete cross-sections", chapter Literature.