

Bearing Resistance Failure GBR+

Inhaltsverzeichnis

Application options	2
Additional option FD-PRO	3
Basis of calculation	4
Definition of the structural system	6
Basic parameters	6
System	7
Foundation	7
Column	7
Soil	8
Ground water	11
Surface	11
Loading	12
Load Cases	13
Single Loads	15
Line Loads	15
Block Loads	16
Area Loads	16
Design / Verifications	17
Foundation engineering	17
Earth pressure (with the add-on FD-PRO)	18
Parameter	19
Output	20

Basic Documentation – Overview

In addition to the individual program manuals, you will find basic explanations on the operation of the programs on our homepage <u>www.frilo.com</u> in the Campus-download-section.

Application options

The GBR+ application is suitable for the verification of squared and rectangular foundations. External loads can optionally apply centrically or with a uniaxial or biaxial eccentricity.

The software application calculates the soil pressure underneath the four corner points and the position of the zero-line in combination with a gaping joint.

The gaping joint, the permissible bearing pressure, the sliding resistance and the position stability as well as of the resistance to ground failure are verified for the foundation.

The structural system consists of the foundation slab and optionally includes a cast-on column (or plinth) with or without eccentricity.

The user can include the following load types in the calculation:

- Single vertical load V at the column location
- Horizontal loads Hx and Hy optionally at the top edge of the column or in the foundation base
- Outer moments Mx and My
- Earth top load and an additional uniformly distributed load applying to the foundation surface without a column and additional vertical single loads applying at freely selectable points.

Standards

- DIN EN 1992
- ÖNORM EN 1992
- BS EN 1992
- NF EN 1992
- PN EN 1992
- EN 1992
- still available:
- DIN 1045-1
- ÖNORM B 4700

According to the selected reinforced concrete standard, the program automatically sets the associated foundation and ground failure standard.

- DIN EN 1997-1
- ÖNORM EN 1997-1
- BS EN 1997-1
- NF EN 1997-1
- PN EN 1997-1
- DIN 1054:1976/2005/2021

Support of all 3 verification methods according to Eurocode 7, adjustable for all national annexes.

The partial safety factors and combination equations for the geotechnical verifications can be edited. See Design - <u>Parameters</u>.

Properties	д
Basic parameter	9.0
⊕ System	2.18
Loading	
⊕. Design	
Output	

Additional option FD-PRO

With the additional option FD-PRO, the foundation programmes FD+/FDB+/FDS+ and GBR+ can be extended to include

- an earth pressure approach
- an inclined foundation base
- a seismic ground failure verification
- a ground failure punching shear verification
- a bearing capacity calculation of the foundation soil with a table of design values of the base pressure resistance.
- a graphical output of the internal forces along the main axes

In FD+/FDB+/GBR+, the circular foundation type is also available with the additional option.

See <u>calculation basis for foundation engineering</u> in the FD+ manual.

See also ▶ <u>Video</u>

Basis of calculation

Position stability

For the verification of the position stability, the stabilising and destabilising moments in relation to the outer edges of the foundation are calculated in combination with the Eurocodes. If you use the result load cases instead of the characteristic ones, they are used in the calculation of the stabilising and destabilising moments without consideration of reduction factors. In this case, only self-weight is multiplied with the partial safety factors that have a favourable or unfavourable effect.

Gaping joint

Under permanent loading, no gaping joint must occur and under the total loading, gaping of the foundation joint is allowed up to the centre of gravity. In combination with Eurocodes, the calculation of the gaping joint is based on representative loads instead of characteristic ones.

If you use result load cases instead of superpositions (Basic parameters > Type of loading), the loads are reduced to the characteristic level with the help reduction factors before examining the gaping joint. In this connection, it is important to define whether the individual load cases are the result of permanent loads exclusively or of both, permanent and variable loads: a gaping joint up to the centre of gravity is only permitted for the combination of permanent and variable loads. It is not permitted if only permanent loads apply.

Permissible bearing pressure

For a simplified verification in standard cases, the existing bearing pressure is compared to the permissible bearing pressure or a design value of the bearing pressure resistance. The permissible bearing pressure can be determined automatically with the help of standardised tables for the simplified verification. You can increase or reduce the permissible bearing pressure taken from the standard tables if the corresponding border conditions, such as the required anchoring depth, ground water or the relation of the horizontal and vertical loads, require this. In combination with Eurocodes, the calculation of the equivalent area for the design value of the bearing pressure is based on representative loads instead of characteristic ones.

If you use result load cases instead of superpositions, the loads are reduced to the characteristic level with the help reduction factors before examining the equivalent area. The design value of the bearing pressure is obtained by dividing the design value of the vertical loads by the representative or characteristic equivalent area. As additional information, the software determines the inclination of the characteristic or representative bearing pressure resultant in order to check whether the inclination is suitable for a simplified verification.

Stability against sliding

If horizontal forces apply, the stability against sliding is verified. It is considered satisfactory if $T_d \le R_{td}$.

 T_d design value of the loads applying in parallel to the bottom of the foundation.

 T_d is calculated by the software by multiplying T_k with the partial safety factors for the decisive limit state. The software uses the partial safety factors for the permanent and quasi-permanent design situations. If you define loads by accidental actions or earthquakes, the accidental and earthquake design situations are taken into account as well.

 $\begin{array}{ll} R_{td} & \mbox{design value of the sliding resistance.} \\ R_{td} \mbox{ is calculated by dividing } R_{tk} \mbox{ by the partial safety factor for the sliding resistance for the decisive} \\ limit state \mbox{ in accordance with the currently selected foundation standard.} \end{array}$

Safety against ground failure

In combination with Eurocodes, the ground failure safety is calculated with characteristic or representative values. The design values of the ground failure resistance are determined by dividing the characteristic values by the partial safety coefficients. They are compared to the design values of the actions, which are multiplied by partial safety factors. Depending on the selected design standard, the characteristic or representative ground failure safety is calculated on the basis of ÖNORM B 4435-2 or DIN 4017.

The FD+, FDB+, FDS+ and FDR+ applications always calculate the ground failure safety as an isolated foundation. FDS+ and FDR+ calculate the ground failure safety as a strip foundation if the wall length corresponds to the foundation length.

In the GBR+ application, the "strip foundation" verification type is optionally available. When you select this type of verification, all shape coefficients and the load inclination coefficients 'ma' and 'mb' are set to 1.0. Instead of the arithmetical equivalent width in the longitudinal wall direction (y-direction) the foundation length (y-direction) is taken into account.

Definition of the structural system

The definition of properties and control parameters is done in the menu on the left side of the screen. You can check the effect of the entered values in the graphical representation on the right screen section. Before the first entry, you can change the units of measurement (cm, m ...) via File > Settings if required.

Assistant/Wizard

The Assistant (formerly called wizard) appears by default/automatically when the program starts, but can be switched off.

Input options in the 3D graphics

The description of the input options in the graphic window is given in the Document "Basic operating instructions PLUS".

Basic parameters

Type of actions

Design values	fac red	loads shall be defined with their partial safety tors. Under particular conditions, these values are luced by reduction factors for the foundation alyses.
Characteristic		loads are specified with the characteristic (1.0- d) value.
Soil bearing resistance		If the option is selected, only the bearing capacity of the soil is output in the form of a table with the design values for the bearing pressure resistance.

Standard reinforced concrete

Selection of the desired reinforced concrete standard.

The corresponding foundation standard is displayed in the graphics window at the top left

Properties	4
Basic parameter ⊕- System ⊕- Loading ⊕- Design ⊕- Output	Q (2)
Basic Parameters	0
Type of actions	characteristic +
Soil bearing resistance	
Reinforced concrete	DIN EN 1992:2015 -
	 EN 1992:2014 ÖNORM EN 1992:2018 BS EN 1992:2015 NF EN 1992:2016 PN EN 1992:2010 DIN EN 1992:2013 DIN EN 1992:2012 DIN EN 1992:2011 ÖNORM EN 1992:2011 ÖNORM EN 1992:2011 EN 1992:2010 EN 1992:2010 DIN 1045-1:2008 DIN 1045-1:2001 DIN 1045:1988 ÖNORM B 4700:2001-06-01

म

System

Location foundation

The global position related to the foundation axis is only required for communication with other programs such as \underline{GEO} and $\underline{SBR+}$.

Remarks

Click the button when the enter your own comments about the system.

Foundation

Foundation Type

Here you select the desired foundation shape

- Rectangular foundation
- Strip foundation
- Circular foundation (with additional option FD-PRO)

which influences the shape coefficients in the bearing failure verification.

See also **Basis of calculation**.

In the foundation ground plan, the x-axis (positive) runs from the left to the right and the y-axis (positive) from the bottom to the top.

Width x	foundation dimension in x-direction
Length y	foundation dimension in y-direction
Height z	foundation height
Groundthe same	Define here whether the terrain around the foundation should be the same everywhere. This setting affects the earth pressure calculation and can affect the bearing capacity calculation.
Average anchoring depth d	Lowest foundation depth below the ground level or the top edge of the basement floor.
Density γ	gamma concrete

Basic parameter 90 Foundation Column Soil Ground water Surface + Loading 🕂 Design - Output Location foundation 0 0.00 x x [m] 0.00 y y [m] **z** [m] 0.00 z Rotation angle α ['] 0.00 0 Remarks ...to the system 1

Properties

Foundation			0	
Foundation	Тур	Rectangle fou	ndation +	
Width	x	Strip Foundation		
Length	У	Rectangle foundation		
Height	z	[m]	1.00	
Ground all around t	he same		\checkmark	
average Anchoring	depth d	[m]	1.00	
Density	Y	[kN/m ²]	25.00	
Base inclination	z,x	[m]	0.00	
Base inclination	z,y	[m]	0.00	
Base inclination	α,χ	["]	0.00	
Base inclination	a,y	[°]	0.00	

Base inclination and a 4-sided different surface definition are possible with the additional option FL-PRO.

Column

Width x	width of the column
Thickness y	thickness of the column
Height z	height of the column

Eccentricity

Eccentricity x	Column eccentricity in x-direction.
Eccentricity y	Column eccentricity in y-direction.

0

-

30.0 •

30.0 0.35

0

18.50 11.00

> 30.0 0.00

> > 0

• • 20.0 50.0 1.00

90

Soil

Soil properties

Soil properties			Properties			д
		further/other parameters are Ind in the <u>info area</u> below.	Basic parameter			٩ 6
Determination $\sigma R_{,d}$	resistance should be	lesign value of the bearing e entered <u>directly</u> , or to come fro <u>N 1054</u>) or from a user defined ction below.	Foundation Column <u>Soil</u> Ground water Surface Surface			
Cross s. resistance σ	R,d Specification of the (design value of the	permissible bearing pressure o f bearing resistance)				
Permissible settlemer		ent for comparison with the	Soil properties			6
		nt and presentation of the	Determination	σR,d	From own t	able 🔻
	utilisation of the set	tlement verification.	cross section resistar	ice oR,d	direct spect DIN 1054:2	
Eff. friction Angle ϕ		iction underneath the foundation	n permissible settlemen	t s,adm.	From own t	
	base.		Effective friction angle	e φ'	[°]	30.0
Soil friction angle	The soil friction ang	le is relevant for the sliding safe	ty Soil friction angle	δk	3/3φ	-
	check. If the angle o	f friction δ is not determined	Soil friction angle	δk	[*]	30.0
		acteristic angle of friction ϕ 'k m	-	Hk/Vk		0.35
		he critical angle of friction for in			ec	lit
		ations. A value of 35° must not b	De Table		cre	ate
		e applies to prefabricated	First soil layer			6
	•	ecast elements are laid in the	Stroke weight	Y	[kN/m ³]	18.50
	•	efabricated foundations are	Buoyant unit weight	Y'	[kN/m ³]	11.00
		a mortar bed, the characteristic	Effective friction angle	φ'	[*]	30.0
	-	= $2/3 \phi' k$ shall be used.	Cohesion	c'	[kN/m ²]	0.00
Inclination of load Hk		n tilt of the characteristic or ring pressure-resultant H/V, whi	Dialog		ор	en
	Click the "open"/"ed	is taken from a table (standard it" Button to open the tabledialo				
	5	<u>dard table (DIN 1054):</u> The soil pressure is taken	Bearing pressure resistan	ce		
	According to Annex	from the corresponding	Soil properties			
		table in the soil engineering	According to Annex	Table	A6.8	
		standard or its National	Consistence	rigid		
		Annex.	Increase (geometry)	[%]		20.0
	Consistence	consistency of soil: rigid,	Increase (strength)	[%]		50.0
		half-solid, solid – only with tables A6.6. to A6.8.	Anchoring depth	d [m]		1.0
	Increase (geometry)	The permissible bearing press the relevant border conditions standard are satisfied. By ticki edited.	(b/d) specified by the	applica	ble	
	Increase (strength)	The permissible bearing press is sufficiently solid. By ticking edited. Note: The values are added up The subsoil has sufficient stren foundation base that correspon foundation, but at least down to	this option the value ca under particular condit ngth down to a depth b nds to twice the width o	an be ions (7 elow th of the	0%). e	

	checks whether an increase in the design value of the bearing pressure resistance is permissible and then applies this.		
Anchoring depth d	Lowest foundation depth below the ground level or the top edge of the basement floor.		
From own table			
Create:	Generates a table with design values of the bearing pressure resistance from several parameters.		
Edit:	Open the dialog to enter the design value of the bearing pressure resistance $\sigma Rd.$		
The value $\sigma_{R,d}$ should come from a geotechnical report and should have sufficient guarantees against ground failure and a sufficient limitation of settlements. Furthermore, the corresponding foundation width and anchoring depth must be			

specified. The meaning of the other buttons can be seen from the <u>Tooltips</u>.

First soil layer

In this section you can enter the values of the first soil layer.

For additional soil layers click the Button "Dialog – open".			
Stroke weight	γ	Specific weight of the soil.	
Buoyant unit weight	γ́	Specific weight of the soil layer under buoyancy. This value is only used if <u>groundwater</u> was defined (► System ► Soil)	
Friction angle	φ́	Friction angle of the soil in this layer.	
Cohesion	C'	Soil cohesion.	

First soil layer			8
Stroke weight	Y	[kN/m³]	18.50
Buoyant unit weight	Y'	[kN/m ³]	11.00
Effective friction angle	φ'	[°]	30.0
Cohesion	c'	[kN/m²]	0.00
Dialog		оре	en

Further soil layers / additional values (> Dialog "open")

Additional soil layers can be added in a table via the "Open" button.

		Library	Name	lcon	Y	Y	φ'	c'	xU'	others
					[kN/m ³]	[kN/m ³]	[°]	[kN/m ²]	[m]	
	1	Table	sand, wide_tier	SE	17.00	9.50	35.0	0.00	1.50	Values
-	2	Table	gravel, wide_tie	GW,GI	16.00	8.50	30.0	0.00	1.00	Values
Table	9		Defined	layers/val	ues can b	e select	ed via a	a soil lay	er librar	y.
Name	Э		A name	for the soi	il layer ca	n be ass	igned ł	nere.		
lcon			An abbr	eviation fo	r the soil	layer car	۱ be as	signed h	nere.	

xU thickness of the soil layer. Soil layers smaller than 0.10 m are not provided.

Other Values

Additional parameters can be entered using the "Values" button. You will be asked whether the settlement calculation should be activated (the table will be expanded accordingly).

			Allgeme	ein					Settlem	ent Analysis		1	Ko	onsolidierung
Library	Name	lcon	Y	Ý	φ	c'	xU'	v	Procedure	E*	Es	x	ks	both sides drained
			[kN/m ³]	[kN/m ³]	["]	[kN/m²]	[m]			[kN/m ²]	[kN/m ²]		[m/s]	
Table	sand, wide_tier	SE	17.00	9.50	35.0	0.00	1.50	0.20	direct specification	400000.00	200000.00	0.50	1E-05	
Table	gravel, wide_tie	GW,GI	16.00	8.50	30.0	0.00	1.00	0.20	direct specification	400000.00	200000.00	0.50	0.002	

Settlement analysis

Poisson's ratio v	The Poisson's ratio defines the ratio of a change in thickness to a change in length as soon as a stress is applied. The Poisson's ratio or transverse contraction coefficient has the formula v or μ . It is one of the elastic material constants and bears the name of the physicist Siméon Denis Poisson.
Procedure	Direct specification or from constrained modulus: To define the compressibility of the soil (Em-module) select - directly in E* or - from the constrained modulus - Em will be calculated from stiffness/constrained modulus Es and correction factor x (from DIN 4019 T1).
E*	Compression modulus. The compressibility of the soil can be specified by a pressure settlement line or calculated from the constrained modulus in connection with a correction factor.
Es	Stiffness/constrained modulus.
х	Correction factor.

Settlement analysis: Consolidation

k	Permeability coefficient of the rate of consolidation. The value can be extracted from the soil report.
Both sides drained	For the calculation of the time to approximate decay of consolidation settlement in unilateral drainage the full layer thickness is set, in bilateral drainage only half the layer thickness.
Cα'	The creep coefficient Ca can be determined from a time-settlement test according to DIN 18135. Usual value range 0.001 to 0.00001.

See also chapter <u>Design – Foundation engineering - settlements</u>

NF EN 1992

If the NF EN 1992 standard is selected, the following parameters are also available.

Category	Soil category according to Annex A of standard NF P94-261. It is important for the bearing capacity calculation from values of the pressiometer test according to Annex D of NF-P94-261.
Em	Define the pressiometric modulus according to Ménard here. It is needed for the settlement calculation from data of a pressiometer test.
PI	The representative value of the limit pressure according to Ménard in the foundation base of the shallow foundation.
α	Rheological factor for settlement calculation from results of a pressiometer test.
qc	The peak pressure resistance comes from the pressure test and derives modulus of elasticity and friction angle for base failure and settlement calculation.

Ground water

Ground water existi	ng This optic "Ground v	on allows you to define whether groundwater exists (disp water").	lays the entry		
Ground water	Absolute	ked option "Ground water existing". depth of the groundwater below the bottom edge of the f values can be used to define a groundwater level below t on.			
Surface					
Ground level	The ground le	evel above mean sea level refers to the top			д
	•	r in the negative X area. It is positive for sea level.			Q 🕲
Anchoring depth	Anchoring de	pth of the foundation body.	und water		
Terrain load	bearing failur	aracteristic permanent area load on the re figure, which increases the characteristic ear resistance.	ace		
Slope	0	evel can be modeled as horizontal, with a General			0
	continuous s	lope, or with a broken embankment. Ground leve	el above mean sea level	[m] :	353.00
	Derm	All around the	ne same		
	Berm	The width of berm is the distance between the outer edge of the foundation and the	ht (+X)		0
		beginning of the slope.	epth	[m]	1.00
	Inclination 0	Terrain load	1	[kN/m²]	0.00
	Inclination β	The terrain inclination indicates the angle of inclination of a slope from the defined		continuously	
		berm. The inclination affects the ground		without continuously	
		failure verification and defines exclusively		broken	
		downsloping terrain. Ground left	t (-X)		0
	Input of the c	embankment sections. The "+" symbol	epth	[m]	1.00
	input of the c	creates a new table row for a further	I	[kN/m²]	0.00
		section. Parameters are length, height or		without	-
		inclination or rise. Ground top	o (+Y)		0
		Anchoring d	epth	[m]	1.00

Four-sided different terrain definition with the additional option FD-PRO

With an existing <u>FD-PRO</u> license, the terrain can be defined differently for each of the four foundation faces. To do this, remove the tick from the "All around the same" option – the entry will be extended accordingly.

0.00

•

0

1.00

0.00

•

[kN/m²]

without

[kN/m²]

without

[m]

Terrain load

Ground below (-Y)

Anchoring depth

Terrain load

Slope

Slope

0 \checkmark

3 \checkmark

0 3

90

Properties

D

Loading

Eigengewicht γ	Automatische Berücksichtigung des Eigengewichtes. Bei Grundwasser oberhalb der Sohle lässt sich das Eigengewicht nicht deaktivieren.	 Basic parameter System Loading Load Cases 		
H loads base	 Option not ticked: The horizontal loads apply at the top edge of the base and generate a moment with a particular lever arm Option ticked: The horizontal loads apply directly in the base joint without 	Single Loads Line Loads Area Loads € Design € Output		
	generating a moment.	Loading	v	
		Self-weight	Y	
Delete horizontal loads	Delete all horizontal loads with one click!	H loads apply	base	
	This is useful if many load cases from other applications	Delete horizontal loads		
	(GEO, B5) have been imported.	right-handed coordinate system		
	Note: The horizontal loads of the individual load cases can	Snow accidental		
	be found/entered under the following point "Load Cases".	Remarks		
Right-hand coordinate s	ystem (new standard)	to the effects		
Accidental snow load	Coordinate system based on the right-hand rule, also referred to as right-hand coordinate system. The signs comp definitions in engineering mechanics. Positive moments about pressure on the bottom and/or in the negative area of the fou- moments about the y-axis generate pressure on the right and area of the foundation. If this option is unchecked (default se positive moments generate pressure on top right and/or in the the foundation. In the graphic representation, both variants an absolute values. The arrows indicate the actual direction of a data entry fields and in the output documents are indicated w change the sign definition, the sign of the moments about the When you check this option, snow loads are automatically indication in addition to the typical design situations. The user ca selectable load factor for the accidental snow loads or have i	ut the x-axis genera indation. Positive I/or in the positive X atting until recently) a positive X/Y-area re shown with their ction. The values in vith their signs. If yo e y-axis changes as cluded as accidenta an either specify a fi	K- of the bu well.	
	automatically by the software. The default value is 2.3			

Remarks

The remarks editor is called up via the 📝 button. This text appears in the output.

0

0

Load case 1

🔘 1/2 🜔 👍 🗙 🔠 🗃 🎒

90

Properties

🗄 System

- Loading

🗄 - Design . Output

Load Cases

Load Case

Description

Column Loads

tab

Basic parameter

Single Loads

... Line Loads Area Loads

Load Cases

Enter the data of the first load case via the data-entry mask or directly in the

load case table, which can be displayed by activating the Load case (below the graphic).

Load case toolbar: Load case 🔘 1/2 🜔 🛃 🗙 🔠 🗃 🌌 See Data entry via tables

To add additional load cases, click on the ^{log} button once more (a new empty input mask is displayed each time).

Tip: A description is displayed in the status line each time you click into an input field.

By clicking on the arrow icon vou can access a load value compilation.

Column Loads

Column Loads		Action	Permanent loads -
Description	Optional text to the selected action can be entered.	Vertical force in z k	[kN] 500.0 🛄
Description	This text is included in the output.	Moment about x Th.1.0,k	[kNm] 0.00
Action	The appropriate actions can be selected from a list:	Moment about y Th.1.0,k	[kNm] 0.00
ACTION	Permanent loads seismic loads	Horizontal force in x Th.1.0,k	[kN] 0.0 🔛
	(<u>calculation method</u> "characteristic").	Horizontal force in y Th.1.0,k	[kN] 0.0
Vertical force in z	Vertical force in the centre of the column	Group membership	0
		Simultaneous group	0
Moment about x/y	Positive moments generate pressure on top right or in the positive x/y section of the foundation.	Alternative group	0
Horizontal Force in x/y	Horizontal loads apply to the top edge of the foundation column, if a column height was defined. These horizon on their way down to the foundation base, which are ta by the software. selected under <u>Type of actions</u> , the following input fields	ital loads generate mome iken into account automa	
0			
Туре	G/G+Q. For consideration in the calculation of the gap no gaping joint may occur, for permanent and variable reach the foundation centre point at the most. For peri theory only, the gaping joint is also tolerated up to the	loads the gaping joint ma manent loads from 2nd or	y
Limit state	STR - internal failure of components e.g. bending mean GEO - failure of the foundation soil e.g. bearing resista EQU - Loss of stability. UPL - Verification against uplift or floating. SLS - Verification of serviceability e.g. settlement or ver	nce failure. rification of gaping joints.	
	The limit state together with the design situation provi the safety factors to be used. If there are no 4 load cas for the limit states STR/GEO-2, EQU, UPL and SLS, mis	ses with the same designation sing load cases are	
	automatically generated with the help of the reduction		
	construction verifications, the limit states SLS and STF		
	simultaneously. Missing limit states are generated by factors.	orrsetting with reduction	
	SLS x reduction factor = STR/GEO-2 and STR/GEO-2 /	reduction factor – SLS	
Design situation			-)
Design situation	Selection of the design situation (permanent, tempora	y, exceptional, earthquak	e).

Reduction factors

These input fields are enabled if "Design values" was selected as calculation method.

Reduction Factor NReduction coefficient for the forces acting in the z-direction (axial force in the
column) and loads (additional concentrated loads, line loads and surface loads).Reduct. Factor OthersReduction factors for other internal forces. If a column was designed in a second
order analysis, the internal forces are only available on the design level. In order to
make verifications in soil engineering available on the characteristic level, the
reduction factors are used to adjust the internal design forces to a characteristic
level. When using the characteristic calculation method (> Basic parameters
> Calculation method) in combination with first-order columns, the afore-mentioned
situation does not occur.

Group membership

The assignment to a group is displayed if "characteristic" has been selected under
Basic parameters
Type of actions.

Simultaneous (concurrent) group

Loads of a particular action group can be defined as "always acting simultaneously" by assigning them to simultaneous (concurrent) groups.

III.: Example for the functioning of alternative and simultaneous groups

Alternative group

Different variable load cases with similar actions can be assigned to an alternative load case group via the allocation of an <u>alternative group number</u>. Only the decisive load case of this alternative load case group is invoked in the superposition.

Bearing pressure / Actions from the column

Display of the bearing pressure pattern

To ensure traceability, the bearing pressure pattern with stress can be shown for all load cases and superpositions decisive in the verifications. Click the symbol "Bearing pressure pattern" to display the graphic. See also \blacktriangleright Design \blacktriangleright Foundation engineering.

Single Loads

Nz.k

Define a new concentrated (single) load by activating the ¹/₄ button (the corresponding input mask is displayed).

Activating the Single load table" giving an overview of the defined loads.

Toolbar: 0 1/2 0 👍 🗙 🗐 🕏 - see also Data entry via tables

- *Tip:* A description is displayed in the status line each time you click into a particular input field.
- In all LC: For "<u>Type of actions</u>" = design values: if the option is marked, the concentrated load acts in all load cases.
 - Value of the axial force of the additional single load. Characteristic (1.0-fold) value from a support. Alternatively, the type of stress can be changed in the <u>basic parameters</u> to

Single Loads	0	l
Single load 🔘 1	1 🔘 👍 🗙 🗃 🗃 💆	í
Nz k	[kN] 0.0	i
at ax	[m] 0.00	
at ay	[m] 0.00	
Active in load case	1 🗹	1

'Design values'. By clicking on the arrow icon would you can access a <u>load value compilation</u>. at ax/ay Position of the additional single load in x or y direction referenced to the foundation centre.

Active in LC Assignment of the additional single load to load cases.

Activating the button \fbox displays a dialog with the corresponding options.

Notes: If a single load is assigned to one or several load cases it acts only in combination with the load case(s).

In the case of the calculation method <u>design values</u> single loads are processed with the corresponding <u>reduction factors</u>.

Single loads that are not assigned to load cases are <u>not</u> taken into account in the calculation.

All verifications are referenced to the column loads. Additional single loads are defined only to check the effects on the bearing pressure, tilting, position stability, sliding and ground failure.

For the verification of punching shear resistance, the loads that apply in the area of the punching cone must be summarized to a resulting load, because the shear design would be unsafe otherwise.

With foundations for twin columns you should combine both columns to a single column instead of defining the second column as an additional single- or line load. Otherwise, you will obtain incorrect results in the verification of punching shear resistance.

Line Loads

General operation as described under single loads.

In all LC:	For " <u>Type of actions</u> " = design values: if the option is marked, the load acts in all load cases.
P1,k	Value at the begin of the line load. Alternatively, the type of action can be changed to 'Design values' in the <u>basic parameters</u> . If parts of the line load are located in examined circular sections of the punching shear check, these are taken into account when determining the shear stress. No extra punching shear check for a wall end or similar is carried out for the line loads. The punching shear check always refers to the column load.
at x1/y1	Position of P1 relative to the foundation center
P2,k	Value at the end of the line load
at x2/y2	Position of P2 relative to the foundation center
Active in load case	e As described under single loads

Block Loads

Block loads can be arranged automatically in quadrants or defined individually.

Caution. This load is not automatically used in conjunction with superpositions. If you click on Generate (Erzeugen) below, 15 alternatively acting load cases with block loads in different load positions are generated. This load coordinate and the action selected below are used.

Area Loads

In all LC:	For " <u>Type</u>	<u>of actions</u> " = design values: if the option is
	marked, th	ne load acts in all load cases.
Loads by soil on the fou	Indation	Height of the earth surcharge, if

applicable. In combination with the weight density γ, the soil load generates an area load on the foundation, which is taken into account in the calculation. *Explanatory note: The earth surcharge load refers to the top edge of the foundation. If a wall, column, wall base or pocket exists, the earth surcharge load is reduced in accordance with the geometry of the structural component.*

Note: This value has nothing to do with the self-weight of the foundation.

Density γ,k Weight density of a possible soil load.

Area Load q,kAdditional area load on the foundation body.Explanatory note: The area load acts on the surface of
the foundation. If a wall, column, wall base or pocket

exists, the area load is reduced in accordance with the geometry of the structural component. If a top-mounted pocket exists, the area load also acts on the pocket, but not in the area of a column casted in the pocket. See the description of the option "Earth surcharge height" for more information.

Active in load case As described under <u>single loads</u>.

er :s ds	Q @
	6
	[kN/m ²] 0.00
	Cat. B: office areas
0	1/1 🔘 👍 🗙 捆 🏭 🧕
Begin	User defined
x1	🚰 full-surface
y1	3/4 (top Left)
x2	3/4 (top Right) 3/4 (bottom Left)
y2	3/4 (bottom Right)
e	2/4 (Left)
	2/4 (bottom)
	2/4 (bottom Left and top
	2/4 (top Left and bottom
	1/4 (bottom Left)
	1/4 (bottom Right)
	Begin x1 y1 x2

0

-

(3)

+

0 0 1

User defined

User defined simplified

exact

90

Properties

🗄 - Loading - Design

. Output

Verification format

EQU - Stability Stability

UPL - Lift off

General

Basic parameter ⊕ System

Foundation engineering Earth pressure ---- Parameter

Design / Verifications

Settings

Earthquake: Psi ₂ =0.5	In accordance with the introductory decree of DIN 4149 for Baden-Württemberg, the combination coefficient Psi2 = 0.5 for snow loads should be used in the superpositions with seismic loads.
Round out	This setting only affects the graphic representation of the course of the internal forces. It has no influence on the calculation results.
Transient situation	When you check this option, the transient design situation is used. When you uncheck the option, the persistent situation is used. The accidental situation and the seismic situation are automatically considered if corresponding actions have been defined.

Foundation engineering

Verification format	Define here whether a - simplified verification, an - exact verification or a - user-defined verification is to be carried out. The <u>simplified verification</u> includes compliance with the design value of the bearing resistance with limitation of the inclination of the load resultants. The <u>exact verification</u> format includes a foundation failure verification, a sliding safety verification and a
	failure verification, a sliding safety verification and a settlement calculation.

User-defined verification format

All verification options are offered here for individual selection.

		Lift up	active		+
Stability	Comparison of destabilizing and stabilizing design	GEO - bearing capacity -	simplified app	roach	h
	values of the effects related to a fictitious tilting edge	Base pressure resultant	active	-	
	at the foundation edge in the EQU limit state. With decreasing stiffness and shear strength of the	Bearing Resistance	active	-	
	subsoil, the tilting edge moves into the foundation.	GEO - bearing capacity-	precise approa	ch	6
	Therefore, the gaping joint must also be investigated.	Ground Failure Check	without	•	
Lift up	Comparison of destabilizing and stabilizing vertical	Safety against sliding	without	•	
· · • P	design values in the UPL limit state.	SLS - serviceability			6
Base pressure resultant	Requirement for the simplified verification: the	Gaping joint	active	-	
	inclination of the characteristic or representative	Settlement	active	+	
Bearing resistance Limitation of eccentricity	The verifications for the limit states ground failure, slidi (verification of the settlement) are replaced by empirica base pressure resistance. Verification according to NF P 94-261 13.3 for the ecce	al design values of the			
Ground failure check	In the <u>ground failure analysis</u> the shear resistance of th foundation level are considered. The soil layers above the foundation level are considered soil plane and the ground top level are horizontal.		the		
Seismic	With the additional option FD-PRO: if the option is sele failure analysis according to DIN EN1998-5:2010 Apper dialog with the appropriate selection/input parameters	ndix F is performed. A	g		

Depth coefficients	The depth coefficients take into account the favorable influence of the strength in the fracture joint above the foundation base in the ground verification. In some European countries, this effect can be taken into with coefficients > 1.	failure
Safety against sliding	When the load vector is not perpendicular to the base surface, the rest the foundations against sliding in the base area must be verified.	sistance of
Calculate settlement	For the settlement analysis, the compression of the soil should be taken into account down to the settlement influence depth ts. The depth ts may be assumed at the level at which the additional perpendicular stress generated by the mean settlement effective load has an amount of 20% of the effective vertical output stress of the soil. One of 5 calculation methods can be selected.	without Settlement equations Stress integration from pressure meter test data from cone penetration data adapted elasticity procedure
Gaping joint	Optional verification of the gaping joint.	

Earth pressure (with the add-on FD-PRO)

Enables the application of earth pressure. See <u>FD-PRO</u>

Properties		
Basic parameter System Coading Design Foundation engineering Farth pressure Parameter Output	Q	0
Earth pressure		0
Use earth pressure		
Wall friction angle δa	2/3φ	•
Earth resistance enabled		
		0
Earth pressure type	Active earth	•
Increased active earth pressure		
Apply tension from cohesion		
Apply tension from cohesion Apply minimum earth pressure		

Parameter

User defined

Mark this option if you want to change the safety factors and design rules that deviate from the set standards.

The corresponding input fields/editing buttons are then displayed.

Use the "Edit" button to open the respective tables for changing the values - the information texts for the individual parameters are displayed in the lower window area when you click in an input field.

- Support of all 3 verification methods according to Eurocode 7, adjustable for all national annexes.
- The partial safety factors and combination equations for the geotechnical verifications can be edited.
- Since all table values can be changed, the standard setting for a specific country (e.g. India, Sweden, etc.) can be easily defined.

Properties	Ф
Basic parameter	0 0
	10
🗄 - Loading	
🗄 - Design	
Foundation engineering	
Earth pressure	
- Parameter	
- Output	

General settings			0
User-defined			\checkmark
Custom values	->	edit	
Custom values	->	Default valu	es
All safety factors		Edit (53)	
Combination equation	ns		0
Verification procedure	1	Edit (2)	
Verification procedure	2	Edit (2)	
Verification procedure	3	Edit (2)	
Failure of structures a	nd memb	ers	0
Action/action effect	STR A	Edit (4)	
Material resistance	STR M	Edit (2)	
Failure of subsoil			0
Action/action effect	GEO A	Edit (10)	
Material resistance	GEO M	Edit (10)	
cross section resistanc	eGEO R	Edit (6)	
Situational security			0
Action/action effect	EQU A	Edit (4)	
Material resistance	EQU M	Edit (5)	
Float up			0
Action/action effect	UPL A	Edit (4)	
Material resistance	UPL M	Edit (5)	

Output

Output scope / options

By checking the desired options, you can determine the scope of output. Font size and scale can be adjusted for the graphic.

Output as PDF document

The Document tab displays the document in PDF. See also <u>Output and printing</u>.

Properties			
Basic parameter System Coding Design Coutput General Foundation engine	sering	Q	8
Output			0
Output scope	User defined		-
EQU - Stability			0
Stability	only in results overview		•
UPL - Lift off			0
Lift up	only in results overview		•
GEO - bearing capacity	- simplified approach		0
Base pressure resultant	in equation form		•
Bearing Resistance	in table form		•
GEO - bearing capacity-	precise approach		0
Safety against sliding	deactivated		•
Ground failure	deactivated	•	
SLS - serviceability			0
Gaping joint	only in results overview	-	
Settlement	only in results overview	+	

Results graphics

You can display result graphics via the "Results" tab.

Allplan Export

Under File - Export you can export a file that can be imported into Allplan.