

Timber Design H011+

Inhaltsverzeichnis

Application options	2
Basis of calculation	2
Data entry	3
Basic parameters	3
Material	3
System	4
General	4
Cross section	5
Cross-sectional weaknesses / Hole	5
Multipart Cross Sections	6
Loads	7
Design	9
General design options	9
Structural fire design	9
Stress-resistance verifications in accordance with EN 1995	10
Stress verifications	11
Verifications of edge stresses	12
Output	13
Reference literature	14

Basic Documentation – Overview

In addition to the individual program manuals, you will find basic explanations on the operation of the programs on our homepage <u>www.frilo.com</u> in the Campus-download-section.

Application options

The software application is suitable for the verification of timber cross sections in accordance with the design rules specified in:

- EN 1995
- DIN EN 1995
- ÖNORM EN 1995
- UNI EN 1995
- NTC EN 1995
- BS EN 1995
- PN EN 1995

The HO11 application performs typical stress-resistance verifications of tension-, compression- or bendingloaded timber members as well as buckling safety and stability verifications. If shear and torsion effects apply, shear-stress analyses are performed in addition. The buckling resistance and lateral stability are verified on an equivalent member system.

For classified timber components in the sense of DIN 4102-4/-22 or EN 1995, 1-2, the fire-resistance period can be determined by means of a hot design process with consideration of the specified burning rates.

In addition to softwood/hardwood and glued laminated timber (with optional user definition), various woodbased materials (see <u>illustration</u>) and laminated veneer lumber from KERTO and STEICO can be selected.

In combination with EN 1995:2008, you can optionally specify resulting load cases or independent single actions with the associated load-action period (LAP) and combine them for the bearing strength verification.

Basis of calculation

For the verifications in accordance with EN 1995, you can optionally determine the internal design forces from the combinations for the bearing strength verifications as per EN 1990. The verifications are performed for solid timber. The fire-safety verifications are based on EN 1995-1-2.

The local member and cross section coordinates comply with the specifications of DIN 1080. The x-axis runs in direction of the positive member axis. The y- and z-axes lie inside the cross section and the positive z-axis points downwards. The x-y-z system consists of three orthogonal legs.

Internal forces and geometric vectors are positive if they are oriented in the direction of the positive axes. The moments *My* and *Mt* are positive if they describe a right-hand helix around the y- and x-axes. Whereas the bending moment *Mz* is positive, according to structural conventions, when it describes a right-hand helix in direction of the negative z-axis in such a way that tension is produced on the positive cross-section sides (dashed lines) when a positive moment load applies.

Data entry

Basic parameters

Select the desired standard for the consequence class.

Material

Here you make the pre-selection of the wood category/timber type:

- Timber
- Wood-based material (plywood, oriented strandboard/OSB, particleboard, fiberboard or gypsum board)
- Manufacturer-specific laminated veneer lumber of the brands KERTO or STEICO

and then the standard-dependent wood species:

Softwood, hardwood, glulam or plywood, chipboard or chipboard, fiberboard or gypsum board.

Subsequently, select the strength class.

The influence of humidity on the timber materials is controlled by assigning the building/component to a use/service class.

You can enter the density γ in addition.

Custom Material:

For solid wood and glued laminated timber, strength and stiffness can be adjusted to your own needs. The dialog for changing the values can be called up with the F5 key in the input field for the strength class. The basis for assessment is the material derived from the standard.

Properties	q
Basic parameter æ System æ Loading	۹ 🕲
Design Output	

Basic parameters		0
Design code	EN 1995:2013	•
Consequence class	2	•
Ductility class	Low	-
Material		۵
Timber Type	Timber	-
Timber	Timber Wood-based panels KERTO	
Material code		
Strength class	STEICO	
Service class	1	•
Charact, bulk density pk	[kg/m³]	350
Specific weight y	[kN/m³]	6.00

System

General

- L the member length *L*, is a default for the effective lengths for flexural and lateral buckling. sky/skz effective length for flexural buckling in the z- or y- direction
- (associated to *ly* or *lz*). sby/sbz effective length for lateral buckling of the compression
 - flange in the y- or z- direction (associated to *M*_y and *M*_z). Note: sb_{y/z} are similar to the lengths sk_{y/z} in terms of mechanical effects.
- Leg distance to end-grain face; distance of the design cross section to the end-grain face, required e.g. for the shear force increase.

Properties		д
Basic parameters System Cross section Loads Design Output		৫ 🕲
System		0
Length I	[cm]	255.0
Flexural buckling sky	[cm]	255.0
Flexural buckling sk:	z [cm]	255.0
Lateral buckling sby	[cm]	255.0
Lateral buckling sb:	z [cm]	255.0
End distance Leg	[cm]	0.0

The local coordinate axes (x, y, z) for the member system are defined in accordance with DIN 1080.

In the two-dimensional member system, y is the bending axis and z the lateral buckling axis. In the threedimensional member system, y corresponds to the main axis I and z to the main axis II.

The effective lengths are equivalent lengths that allow the assessment of buckling problems inside the global structural system. The buckling stability of a system is a function of the geometry, the stiffnesses and the current loading. Therefore, the effective length can be seen as the distance in length between the deflection points of an ideal buckling and deformation figure in the examined member section.

The effective length for lateral buckling can be interpreted in a similar manner. It is characterised by flexural buckling of the compression zone or the compression flange. As supports should be defined as fork supports, in general both values are of the same order of magnitude. If lateral supports have been defined in the compression zone, you can use the reduced length. You should note that the effective length sb_y corresponds to sk_z in terms of the mechanical effect. The same applies to sb_z and sk_y .

The flexural buckling coefficients *Lambda* and *Omega* as well as the lateral buckling coefficients *LambdaB* and *KB* are identified by the coordinate indices of their reference lengths *sk* and *sB*.

무

0.0

az [cm]

Cross section

You can define the cross section as a multi-piece rectangular cross section via its dimensions (b/d = by/dz). You can consider weakening of the cross section for the stress analyses by defining a recess on the individual cross section. The stiffness values are determined by the software under the condition that the individual cross sections are arranged symmetrically and connected to each other without shear. In connection with multi-piece cross sections, the transfer of actions to the individual cross sections must be ensured as with a member bundle – the loading is distributed proportionally to the individual cross sections.

by	cross section width in the y-direction		
dz	cross-sectional height in the z-direction		
layer direction	KERTO/STEICO: The direction of the lamellas or layers can be defined as flat or upright.		
$oldsymbol{lpha}_{ ext{top/bot}}$	with an angle between the force vector and the cut grain on the truss top or bottom chord, additional loading is generated due to deflection. A stress combination coefficient is calculated from this additional loading that is referenced to the bending strength in accordance with the standard.		
with hole	this options displays the parameters to define a "weakening of the cross section".		
Multi-part	this option shows the parameters for the multi-part cross- sections.		

Cross-sectional weaknesses / Hole

You can define an individual recess in this section.

The weakening is assumed to act in each partial cross section.

- Note: The required verifications for openings as per DIN EN 1995-1-1:2010, NCI NA 6.7, such as the verification of the transverse tension resistance, are not handled in this software application! Only the typical stress-resistance verifications are performed.
- yS distance of the <u>c</u>entre <u>of</u> <u>g</u>ravity (CoG) of the recess in the y-direction
- zS coordinate of the centre of gravity (CoG) of the recess in the z-direction
- dy width of the recess in the y-direction
- dz height of the recess in the z-direction

The magnitudes of the deductions are calculated:

dA	= dby · dbz	= area deducted from the full cross-sectional area
dlyy	= dby \cdot ddz ³ / 12+dA \cdot zs ²	
dWyy	= dlyy / (dz/2)	= deducted section modulus
dlzz	$= ddz \cdot dby^3 / 12 + dA \cdot zs^2$	= deducted section modulus
dWzz	= dlzz / (by/2)	
dAQy	= deducted area for the shears	stress analysis (not determined by calculation)
dAQz	= deducted area for the shear s	stress analysis (not determined by calculation)
dWT	= deducted torsional section n	nodulus (not determined by calculation)

Basic parameter System General Cross-section Coading Design Output			۹ 🕲
Cross-section Dimen	sions		0
Width	by	[cm]	10.0
Height	dz	[cm]	4.0
With hole			\checkmark
Multi-part			\checkmark
Hole			0
CoG Distance	yS	[cm]	2.0
CoG Distance	zS	[cm]	0.0
Width	dy	[cm]	4.0
Height	dz	[cm]	4.0
Multi-part			0
Number in y			1
Distance in y	ay	[cm]	0.0
Number in z			1
		10-00000 A	

Properties

Distance in z

Where multi-piece cross sections are concerned, the deductions are multiplied with the number of cross sections and displayed for the composite cross section. Weakening is not considered in the fire safety verification.

Multipart Cross Sections

Number in y / z Number of cross sections defined in y or z direction

ay / az Spacing between the cross sections in the y or z direction

The area *A*, the shear areas *AQ*, the section moduli *Wyy* and *Wzz* as well as the torsional section modulus *WT* are added up from the individual cross sections, if a multi-piece cross-section was defined. The composite action is not considered. The processing of the cross sectional properties is based on the units: cm, cm^2, cm^3, cm^4 .

Stiffness values for symmetrical multi-part cross sections:

 $htot = dz \cdot kz + az \cdot (kz - 1)(total height in the z-direction)$ $btot= by \cdot ky + ay \cdot (ky - 1)$ (total width in the y-direction)

A =	by · dz · ky · kz	
AQy =	by · dz · ky · kz / 1.5	(shear area for max_TauY = Q/AQy)
AQz =	by · dz · ky · kz / 1.5	(shear area for max_TauZ = Q/AQz)
WT =	WT (individual cross section	on) · ky · kz
	(torsional stiffness, interpo	plation of WT based on the table for rectangular cross sections)

(12) (12)

$l_{yy} = b_y \cdot d_z^3 / 12 \cdot k_y \cdot k_z$	(second moment of area)
$i_{yy} = \sqrt{I_{yy} / A}$	(radius of inertia)
$W_{yy} = I_{yy} / (d_z/2)$	(resistance moment for My)
$I_{zz} = b_z \cdot b_y^3 / 12 \cdot k_y \cdot k_z$	(second moment of area)
$i_{zz} = \sqrt{I_{zz} / A}$	(radius of inertia)
$W_{zz} = I_{zz} / (b_y / 2)$	(section modulus for Mz)

Loads

Select the load type: Design values, characteristic values or both.

Define the first load case directly in the data-entry mask. Add additional load cases with the help of the load case toolbar:

characteristic loadcases () 2/2 () La X H H H Constructions)

To add load cases, always set up a new load case first by activating the button (a new load case definition mask is displayed each time).

Alternatively, add additional load cases via the load case table, which is accessible on the tab (below the graphic screen).

Group of acti	ons selection of the action group for characteristic values.
Nx	axial force (in the x-direction); compression is negative, tension is positive
ez	eccentric transfer of axial force (positive in the z- direction)
еу	eccentric transfer of axial force (positive in the y- direction)
Му	internal moment around the y-axis; positive if the vector orientation is in direction of the positive y-axis
Mz	internal moment around the z-axis; positive if the vector orientation is in direction of the positive z-axis
Vz	shear force, positive in the z-direction, generates the moment <i>My</i>
Vy	shear force, positive in the y-direction, generates the moment <i>Mz</i>
Mt	torsion moment, positive around the x-axis

Properties		4
Basic parameter ⊕- System		90
Loading		
Characteristic	loads	
Design		
Output		
		0
Load type	both	+
User defined actions		1

Properties	д
Basic parameter	٩ (۵
E- Loading	
Design	

Design load			0
Design loads	0 1/	1 🔘 🛃 🕽	< 油 🖬 🌛
Axial force	Nx	[kN]	0.0
Eccentricity	ez	[cm]	0.0
Eccentricity	ey	[cm]	0.0
Moment	My	[kNm]	0.00
Moment	Mz	[kNm]	0.00
Shear force	Vz	[kN]	0.0
Shear force	Vy	[kN]	0.0
Torsion	Mt	[kNm]	0.00
Load-duration class		long	-
Permanent load part	G/tot	[%]	90.00
Design situation		temporary+Fir	e situation 🔹
Coefficient fire situation	nfire		0.65

Load duration Decisive class of the load duration – usually this is the shortest load duration of the actions that are involved in this design load case.

G/tot Ratio (in %) of the axial force component from the permanent load to the total load.

Design situation With "temporary+fire" the factor for the fire design situation can optionally be specified.

Internal forces and geometric vectors are positive if they are oriented in direction of the positive axes. The moments *My* and *Mt* are positive when they describe a right-hand helix around the y- or x-axis. Whereas the bending moment *Mz* is positive, according to structural conventions, when describing a right-hand helix in direction of the negative z-axis in such a way that tension is produced on the positive cross-section sides (dashed lines) when a positive moment load applies.

Optionally, you can define design loads, assign the load duration class (LDC) and the design situation to them and use these loads in the bearing strength verification.

Because the verifications in the different design situations can be performed on different design levels the design loads of the permanent and transient design situations can optionally be converted with the help of the factors η_{acci} , η_{fire} and η_{seis} .

Desig	gn loads	s) 🗰	Chara	cteristic	loads										
[Nx	ez	ey	My	Mz	Vz	Vy	Mt	LDC	G/tot	Situation	лассі	nfire	ηseis	2
	[kN]	[cm]	[cm]	[kNm]	[kNm]	[kN]	[kN]	[kNm]		[%]					
1	-10.0	0.0	0.0	3.00	0.00	-10.0	0.0	0.00	permanent	100.00	permanent/temporary				4

 η_{acci} factor to convert design loads of the permanent and transient design situations for the accidental situation.

 $\eta_{\text{fire}} \qquad \qquad \text{factor to convert design loads of the permanent and transient design situations for the fire situation.}$

 $\eta_{\text{seis}} \qquad \qquad \text{factor to convert design loads of the permanent and transient design situations for the earthquake situation.}$

Design

General design options

sign definition	"according to marked sides": Positive internal forces always create tension on the tension side. The tension sides lie in the positive quadrant of the right-handed coordinate system. "According to positive axes": Positive internal forces always point with their direction vector in the positive direction of the coordinate axes of the clockwise rotating coordinate system. This corresponds to the definition of the sign in technical mechanics.
kmod mean	for wind action, $k_{mod,short}$ is used as per EN 1995. Some National Annexes allow using the <u>mean</u> value of the short and very short kmod factors in the calculation: kmod = kmod ($k_{mod,short} + k_{mod,very short}$)/2 Tick this option to use the <u>mean value</u> as specified in the NA.

Structural fire design

Tick the option "With fire protection" to display the data-entry fields for the fire design.

tF	burn-off period [min], 30 for the verification as F30 B	Fire exposure of
ß	burn-off velocity [mm/min] in the cross section	Burning rates a
β	top/bottom/left/right, e.g. 0.8 [mm/min] for softwood	Burning rate top
		Burning rate bo
Method	verification method for the fire design:	Burning rate left
	when you select the "Both methods" option, the software performs the calculation with both methods	Burning rate rig
	depending on the selected standard and puts out the de "Simplified method" = "method with reduced cross section" "Exact method" = "method with reduced stiffnesses"	

For multi-piece cross sections, currently only the burning behaviour of the single member is considered.

Weakening of the cross section is not handled in this fire safety verification. In special cases, you should define an equivalent cross section that was matched to the weakening state.

You can optionally disable this verification.

See also: Fire protection analysis timber.pdf

For the fire safety verification as per EN 1995-1-2 you can optionally use either the method of reduced cross sections described in paragraph 4.2.2 or the method of reduced properties described in paragraph 4.2.3. The shear-force resistance is verified with the help of the approximation formula of DIN 4102, because there is no other solution approach available. Discontinuous burn-off loss is not treated.

Properties			д			
Basic parameter System Loading Besign Output		٩	0			
Global design option	5		0			
Inner forces - sign defini	tion	acc.to marked sides				
kmod mean (wind)			•			
Permanent load part		Depending on permanent				
Design situations(cha	aract.Lc only)		0			
With permanent/tempo	rary situation		~			
With accidental situation		\checkmark				
With accidental snow si						
With earthquake situation	\checkmark					
With fire protection	\checkmark					
Fire design						
Method		0 automatically	+			
Fire resistance class		R 30				
Burning on all sides						
Fire exposure above			\checkmark			
Fire exposure below			\checkmark			
Fire exposure left			\checkmark			
Fire exposure on the right		\checkmark				
Burning rates according	to the standard					
Burning rate top	βn top	[mm/min] 0.8	0 🔽			
Burning rate bottom	βn bottom	[mm/min] 0.8	0 🗸			
Burning rate left	βn left	[mm/min] 0.8	0 🔽			
Burning rate right	βn right	[mm/min] 0.8	0 🔽			

Stress-resistance verifications in accordance with EN 1995

The software performs the typical stress-resistance verifications for tension, compression or bending load, the stability verifications, which take flexural buckling or lateral buckling failure of a beam into account with the characteristic equivalent system lengths *l*_{ef} as well as shear stress analyses for shear force and torsion. The verifications of the resistance to compressive stress are only performed if a negative axial force applies and are marked with a negative sign. Stability verifications will only be performed when an area of the cross section is overcompressed. The verifications are based on the corresponding definitions of EN 1995. Any limitations for materials subject to approval must be evaluated separately if the software documentation does not contain any information on that matter.

Stability coefficients for flexural buckling

Effective slendernesses: $\lambda_z = \mathbf{s}_{kz} / \mathbf{i}_z$ or $\lambda_y = \mathbf{s}_{ky} / \mathbf{i}_y$

If the load relation of g/q > 0.70, $E_{0.05} = E_{0.05}/(1 + k_{def})$, if the component is mainly under pressure.

 $\lambda_{rel} = \lambda / \pi \cdot \sqrt{f_{c0k} / E_{0.05}}$

The factor $\beta_c = 0.2$ applies to solid timber; $\beta_c = 0.1$ to laminated timber.

Relative slenderness ratio:

Auxiliary value: $k = 0.5 \cdot (1 + \chi \cdot (\rho \epsilon \lambda - 0.3) + {}^{2}rel)$ Flexural buckling coefficients: $k_{c} = 1/(k + \sqrt{k^{2} - \lambda^{2}rel}) \le 1,0$

The flexural buckling coefficients are determined for both loading directions y, z and are considered according to their direction in the stability equations. The consideration of the direction was disregarded in the previous standard.

Stability coefficients for lateral buckling

Radii of inertia of lateral buckling

$$i_{my} = \sqrt{I_{zz} \cdot I_{xx}} / W_{yy}$$
 or $i_{mz} = \sqrt{I_{yy} \cdot I_{xx}} / W_{zz}$

The program calculates always simplified:

$$i_{my} = \frac{b^2}{h}$$
 or $i_{mz} = \frac{h^2}{b}$

Effective slenderness:

$$\lambda_{\rm B} = I_{\rm ef} / (\pi \cdot i_{\rm m}) \cdot \sqrt{f_{\rm m,k} / \sqrt{E_{0,05} \cdot G_{05}}}$$

The program calculates always simplified: $\lambda_{rel,m} = I_{ef} / (0,78 \cdot i_m) \cdot \sqrt{f_{m,k} / E_{0,05}}$

if $\lambda_{rel,m} \leq 0.75$ then k_{crit} = 1,00 ;

if $\lambda_{rel,m} \leq 0.75$ and $\lambda_{rel,m} < 1.40$ then $k_{crit} = 1.56 - 0.75 \cdot \lambda$;

if $_{rel,m} \geq 1.40$ then k_{crit} = 1.00 ;

Preliminary values

Increase or reduction of the permissible strength limits because of particularities of the structural system or the component (e.g. $k_1 = 1,10$) will no longer be considered.

Material safety coefficient:

 γ_m = 1.30 for permanent/transient design situations

 γ_m = 1.00 for accidental design situations

With k_{red} = 0.7 for rectangular cross sections h/w \leq 4; VH, BSH, BFSH; With k_{red} = 1.0 for all other cross sections

Cross-sectional properties

Ax _{gross}	= Ax
Wyy _{gross}	= Wyy
Wzz _{gross}	= Wzz
Wxx _{net}	= Wxx - dWT
AVy _{net}	= AVy - dAQy
AVz _{net}	= AVz - dAQz
Ax _{net}	= Ax - dA
Wyyy _{net}	= Wyy - dWyy
Wz _{net}	= Wzz - dWzz

Design moments

$$\begin{split} My,d &=: My,d + Nx,d \cdot ez \ / \ 100 \ [kNm] \\ Mz,d &=: My,d + Nx,d \cdot ez \ / \ 100 \ [kNm] \end{split}$$

Dimensions/units:	
Cross sectional properties:	b/d [cm/cm], A [cm²], W [cm³], I [cm4], i [cm]
System lengths:	Lx=Ls [m], sk [m], sB[m]
Stresses:	Sigma [MN/m ²] = [N/mm ²], Tau [MN/m ²] = [N/mm ²]
Conversion of the axial force portion:	10 [kN/cm ²] = 1.0 [MN/m ²]
Conversion of the moment portion:	1,000 [kN · m/cm ³] = 1.0 [MN/m ²]

Stress verifications

The stress-resistance and stability verifications are based on EN 1995-1-1, 6.1 - 6.3

Verifications of edge stresses

$$f_{my,d} = \frac{f_{my,k}}{\gamma_{\mathsf{M}}} \cdot k_{mod}, f_{mz,d} = \frac{f_{mz,k}}{\gamma_{\mathsf{M}}} \cdot k_{mod}, f_{c,0,d} = \frac{f_{c,0,k}}{\gamma_{\mathsf{M}}} \cdot k_{mod}, f_{t,0,d} = \frac{f_{t,0,k}}{\gamma_{\mathsf{M}}} \cdot k_{mod},$$

 $\begin{aligned} \mathsf{DIN04}: factor(f_v)_{\text{press},\text{NH},\text{BSH},\text{LH}} = 1,50; factor(f_v)_{\text{tens},\text{NH},\text{BSH},\text{LH}} = 0,75\\ \\ \mathsf{DIN08}, \mathsf{EN5}: factor(f_v)_{\text{press},\text{LH}} = 1,50; factor(f_v)_{\text{press},\text{NH},\text{BSH}} = 2,0; factor(f_v)_{\text{tens},\text{LH}} = 0,75 \end{aligned}$

The inclination angles between the force orientation and the grain direction can be specified for the top (z=d/2) and bottom (z=+d/2) edges. Compression as longitudinal stress generates transverse compression, whereas tension generates transverse tension. The shear strength is lower under tension and higher under compression.

The stress verifications are based on EN 1995-1-1, 6.4.

Output

The "Document" tab displays the data to be put out.

See also:

Output and printing

As a standard the output scope includes the detailed output of loads with all kinds of intermediate values to ensure traceability.

Optionally you can disable the detailed output and reduce the scope to the defined parameters and the essential results.

Results:

The maximum utilization is displayed on bottom right of the graphic window.

Graphics Document								
i 🛃 🎒 🔲 🗖 🎦 i 🍕 🗸 🕤 100% 🔹	💿 🔯 🖃 🗄 🚺 🚳 🕥 Page 1	of 3 🔘 🕲	🚱 • 🕲 • 🗄		🕘 🛦 🙈	Start page: 1	Page layout	
			4	e 1 a a a 5 a .	<mark>.</mark>		7	8
Page 1	System System drawing Design load case 1		10.0					^
Page 2		3.50	•10.0	5	2			
	Bases of calculation	+	10		-			
Page 3 0 - - -	Design codes: Consequence class	DIN EN 1995-1-1/ DIN EN 1990/NA: 2		c. EN 1995-1-1/	A2:2014)			
	Material Softwood C24, Service class: 1 acc.to EN 338:2016	(closed, heated; AF	<65%; BMC<15	%)				
<u>a</u>	E0,mean E0, [N/mm ²] [N/mm		G _{γ.05} [N/mm ²]	Gz, mean [N/m m ²]	Gz,05 [N/mm ²]	Pk [kg/m ³]	γ [kN/m³]	
<u></u>	11000.00 7400.0	690.00	460.00	690.00	460.00	350	6.00	
< > · · · · · · · · · · · · · · · · · ·	2 2	z 72		r		4	<i>z</i>	> *

Reference literature

- /1/ DIN EN 1995-1-1:2010, DIN EN 1995-1-2:2010
- /2/ DIN EN 1990:2010
- /3/ Scheer, C., Knauf Th., Meyer-Ottens, C.: Rechnerische Brandschutzbemessung unbekleideter Holzbauteile. Ernst&Sohn Verlag - Bautechnik 69 (1992) Booklet 4, p. 179 - 189
- /4/ DIN 4102 Part 4: Brandverhalten von Baustoffen und Bauteilen, 5.1 Grundlagen zur Bemessung von Holzbauteilen, Anmerkung 8); Beuth-Verlag Berlin March 1994.
- /5/ Holzbau-Taschenbuch: Bemessungsbeispiele nach Eurocode 5, 11th Edition. Ernst & Sohn, Berlin 2014.
- /6/ DIN 4102-4/-A1 (Draft of November 2003): Brandschutzbemessung von Bauteilen und Verbindungen im Holzbau (DIN 1052:1988, DIN 1052-1/A1:1996)
- /7/ DIN 4102-4/-22 (Draft of November 2003): Brandschutzbemessung von Bauteilen und Verbindungen im Holzbau (DIN 1052:2004)