

Pile Foundation PFAHL+

Contents

Basis of calculation Data entry General operating instructions Basic parameters	4 5 6 8 9
General operating instructions	5 6 8 9
	6 8 9
Basic parameters	8 9
	9
Structural system	-
Pile system	11
Pile material	
Soil profile	12
Groundwater	12
Loading	13
Pile loads	13
Negative skin friction	14
Lateral pressure	15
Design	16
Axial pile resistances	17
Lateral pile resistances / subgrade areas	17
Deformations (Displacements)	18
Reinforcement dialog (ribbon)	19
Cross-section	20
Plan view	20
3-D view	20
Output	21
Scope of the output, calculation, results	21
Connected programs	21
Definition options in the graphical user interface	22

Basic Documentation – Overview

In addition to the individual program manuals, you will find basic explanations on the operation of the programs on our homepage <u>www.frilo.com</u> in the Campus-download-section.

Application options

With the program Pfahl+, the internal and external load-bearing capacity of bored piles, micro drilled piles, reinforced concrete or steel prefabricated piles, ductile cast iron driven piles, grouted micropiles as well as pipe grouted piles can be verified. For micropiles and ductile piles, the buckling analysis can be carried out on the basis of the publication by Ofner and Wimmer.

Via interfaces to the proven FRILO programs SBR+ Soil Settlement and EDB+ Earth Pressure Calculation, both the soil settlements in the pile environment and the lateral earth pressure acting on the piles can be taken into account. By comparing the pile settlements and the soil settlements along the pile skin surface, an action from negative skin friction up to the neutral point can be optionally applied.

The axial pile resistances, due to skin friction and end-bearing pressure, can optionally be determined either by evaluating static or dynamic pile test loads or based on empirical values given by the recommendations of the pile work group <u>"EA-Pfähle"</u> separately for the serviceability limit state (SLS) and the ultimate limit state (ULS). The recommendations on piles are published by the German Geotechnical Society DGGT. For a resulting tensile load in the pile, the axial pile resistances from skin friction are verified analogously. For tension piles, the verification of the safety against uplift (UPL) is optionally performed with the help of an attached soil prism.

In the verification of the external pile load-bearing capacity in the horizontal direction, the user-defined pile foundation is relocated to deeper soil layers until the resulting foundation stresses no longer exceed the maximum earth resistance stresses.

The design of the reinforced concrete cross-sections is performed on the basis of a non-linear calculation with consideration of second-order additional loads and the actual pile stiffnesses due to freely selectable reinforcement.

Available standards

- DIN EN 1997 / DIN EN 1992
- ÖNORM EN 1997 / ÖNORM EN 1992
- BS EN 1997 / BS EN 1992

Model

The user can define any number of horizontal soil layers and an aquifer.

The pile system can consist of a single pile or a group of piles. The design is always performed for a single pile without giving consideration to any effect of the pile group. By defining a group of piles, the decisive lateral earth pressure acting on a single pile can be determined in accordance with the recommendations on piles. The user can optionally take a toe expansion for circular piles into account.

Loading and superposition

For the calculation of the soil settlements in the environment of the pile shaft, the user can define a surface load over a wide area.

Optionally, the self-weight of the piles can be included automatically.

The user can define the external loads acting on the piles either as vertical head loads, optionally also in connection with an eccentricity, or as horizontal head loads or also as head moments related to the main axes in the x- or y-direction in each case.

The number of load cases and their kind of action are freely selectable.

Automatic superposition of the load cases according to the applicable superposition rules is also integrated.

The application of variable loads and the number of decisive design load combinations can be controlled via the assignment of variable loads to alternative and concurrency groups.

Optionally, additional loading due to negative skin friction can be taken into account up to the neutral point if the soil settlements in the area of the pile skin surface are greater than the pile settlements. As a calculation

approach, both a direct specification of the negative skin friction force and an automatic calculation (via interface to the Soil Settlement program SBR+) using pile and soil settlements are available for selection. In this calculation, a distinction is always made between the two limit states ULS (Ultimate Limit State) and SLS (Serviceability Limit State).

Optionally, the user can define an action from lateral earth pressure (according to specification or according to EA-Pfähle 2012 or the Annual Report 2020 of the DGGT) acting on the piles in the x- or y-direction. When doing so, he/she can either take any user-defined load polygons into account or have the decisive lateral earth pressure automatically calculated from flow pressure or earth pressure via the interface to the Earth Pressure Calculation program EDB+.

Result options

The user can display all results as graphics or tables with a well-structured result list that is customizable in terms of scope and details. Especially the following results are put out:

- Comparison of pile settlement and soil settlement with representations of the neutral points in the serviceability and ultimate limit states for the derivation of negative skin friction.
- Mapping of the resistance settlement curve for the point-bearing pressure, the skin friction and the pile bearing capacity derived from empirical values or test loading.
- Design internal forces for compression and tension piles in the serviceability limit state (SLS) and the ultimate limit state (ULS).
- Mobilised foundation stresses, both in the direction of the main axes and as a resultant.
- Superposition of the foundation stresses with the earth resistance to represent the required stress limitation and the relocations of the foundation stresses to greater depth, if applicable.
- Deformation of the pile along the main axes in the serviceability limit state SLS.
- Representation of the selected and/or required reinforcement.

Planned extensions

In a subsequent version the calculation of pile groups with consideration of the group effects is being planned in order to simulate the different load-bearing behaviour of the individual piles within a group. In this connection, a polygonal soil layer and topographical model will then also be available to consider different soil stratifications along individual piles within the group.

Interfaces to other programs

- Soil Settlement SBR+ (calculation of the decisive settlement in the pile environment to determine the negative skin friction)
- Earth Pressure Calculation EDB+ (calculation of the decisive lateral earth pressure and the earth resistances)
- Reinforced Concrete Column B5+ (calculation of the pile as a column on elastic foundation)
- Interface from GEO/PLT to Pfahl+: Piles below floor slabs can be modelled this way, loads from the floor slab can be passed on to the piles. When called from the <u>building model</u>, support springs are returned to the building model after the calculation.
- Framework RSX (steel pile)

Basis of calculation

The basis of calculation is described in a separate (german) document.

Data entry

General operating instructions

Assistant/Wizard

The <u>assistant</u> (formerly called wizard) is launched automatically when you start the program. You can enter quickly the most important key figures of the structural system in the displayed window. These values can be edited subsequently in the input section or on the <u>Graphical User Interface (GUI)</u>. Self-defined items can be imported as templates. To save them as a template go to ► File ► Save as ► and select the option "Use as template".

Graphical user interface GUI

See <u>Definition options in the graphical user interface</u>. See also <u>Graphical User Interface (GUI)</u> in the Basic Operating Instructions-PLUS.

Interactive dimensional chains

As in all Plus programs, the dimensional values are editable and can be changed directly in the graphical user interface.

Interactive texts

The texts displayed in the top left section of the GUI are interactive as in all PLUS programs and can be clicked on. This allows you to display dialogs in the GUI, which are otherwise only accessible via the menu on the left. See also the <u>Basic Operating Instructions-PLUS</u>.

Basic parameters

Foundation engineerir	ng Standards and design standards	Properties		₽
Foundation standard	definition of the standard and its national annex. - DIN- / ÖNORM- / BS EN 1997 and select the load design standard the	Basic parameter → System → Loading → Design → Output		۹ 🕲
	structural safety analysis is based on. If you	Foundation engineering and o	design standards	0
	use Eurocodes and specify the national	Foundation standard	DIN EN 1997:2010	-
	version the associated National Annex is	Reinforced concrete standard	DIN EN 1992:2015	-
	also referred to. Currently, the reinforced	Optimisation		0
	concrete based on DIN EN 1992, ÖNORM EN 1992 or BS EN 1992 is supported.	Optimisation		
	1992 OF DS LIV 1992 IS Supported.	Optimisation parameters		1
Optimisation		Proofs		0
Optimisation	Check this option if the geometry of the pile	Check execution standard		
	is to be adjusted for the geotechnical verifications, if necessary.	Verification of soil body for te	nsion pile	۵
	2	Check of soil body		
Optimisation parameters	Click the edit button to display the dialog for	Design options		0
	the optimisation parameters. Here you define how the pile geometry is to be	Internal dimension		
	optimised:	PSF for BHg,d		1.50
	Via the shaft length, the cross-section or	Stress limitation		
	both. Please note the information on the	Safety concept		0
	individual parameters displayed in the lower	ψ2 for crane loads		1.00
	part of the window.	Snow as accidental loads		
Proofs		ψ 2 = 0,5 for snow (AE)		
Check execution standard	Check this option if the boundary conditions	Location in windzone 3 or 4		
Check execution standard	of the execution standard are to be checked.	Equal γG for all permanent loads		\checkmark
		Design situations		0
		Structural safety	Permanent	-
Verification of soil boo	ay for tension pile	Serviceability	Common design situation	-

Check this option if you want to perform a verification in the limit state UPLIFT for tension piles.

Design options

Internal design	check this option if the internal load-bearing capacity of the pile should be verified.
PSF for BHg,d	partial safety factor for the determination of the design value of the resulting soil resistance force.
Stress limitation	if you check this option, the soil stresses are limited automatically for the verification of laterally loaded piles.
Safety concept	
ψ2 for crane loads	combination coefficient $\psi 2$ for crane loads (relation of the permanent portion to the total crane load).
Snow as accidental load	when you check this option, snow loads are considered as accidental action in addition to the common design situations.
Load factor for snow (A)	this factor is used to take the accidental snow load related to its characteristic value into account. You can freely specify it (check option, to enter the value) or

have it automatically calculated by the program.

Rare design situation Common design situati

Quasi-permanent design situation

ψ 2 = 0.5 for snow	check this option to increase the value of the combination coefficient ψ 2 to 0.5 for snow action in the seismic design situation (AE). (See introductory decrees of the German federal states, e. g. Baden-Württemberg).
Located in wind zone	check this option, if the building is located in wind zone 3 or 4. In this case, 'snow' is not considered as an accompanying action to 'wind', which is the leading action.
Equal γG	if this option is checked, all permanent loads or load cases are applied together with the same partial safety factor (γ G,sup or γ G,inf), otherwise permanent loads are combined independently with their lower and upper partial safety factors.
Design situations	
Structural safety	Selection of the design situation for the structural safety checks (permanent, transient).
Serviceability	Selection of the design situation for the serviceability checks (rare, common, quasi-permanent).

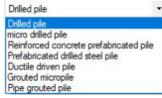
Structural system

Pile foundation system

· · · · · · · · · · · · · · · · · · ·	
Pile foundation type	select whether a <u>single pile</u> or a <u>group of</u> <u>piles</u> is used.
Attached soil body	when you enable the check of the soil body in the <u>basic parameters</u> , you can specify here the width of the attached soil body in the x- and y-direction for the uplift verification of an individual pile.
Group of piles	
Lavout	in a row or staggered (offset).

Layout	in a row or staggered (offset).
Arrangement in the x-direct	ion or y-direction:
Grid dimension	mean spacing of the piles.
Number of piles	number of piles in the group per direction.
The decisive pile spacing a information.	nd the dimensions are displayed as

Remarks


You can optionally enter comments on the system that are subsequently included in the output. See also <u>Remarks Editor</u>.

Properties	д
Basic parameter	9.0
- System	
Pile system	
Pile material	
Soil profile	
Groundwater	
🗄 Loading	
⊕ Design	
Output	

Pile foundation system			0
Pile foundation type		Pile group	1
Layout		Single pile	
Arrangement in the x-direction		Pile group	0
Grid dimension in x-direction	ax	[m]	5.00
Number of piles in the x direction	nx		5
Decisive pile spacing	a'x	[m]	5.00
Dimension in x-direction	Bx	[m]	20.00
Arrangement in the y-direction			0
Grid dimension in y-direction	ay	[m]	5.00
Number of piles in y-direction	ny		5
Decisive pile spacing	a'y	[m]	5.00
Dimension in y-direction	By	[m]	20.00
Remarks			0
about the system			1

Pile system Type of pile (sort)

Selection of the type: drilled (bored) / micro drilled / reinforced concrete or steel prefabricated / ductile driven piles, grouted micropiles, pipe grouted piles.

Type of cross-section Reinforced concrete: Rectangular or circular cross-sections can be selected for bored piles and prefabricated driven piles made of reinforced concrete.

Steel:

Pipe, rectangular and I-sections can be selected for prefabricated driven piles made of steel. The crosssection/cross-section type can be selected and edited using the edit button. A pipe cross-section is displayed here by default - this can be edited directly.

Dimensions			0
Name			RO 170 x 10.0
Diameter (outer)	h	[cm]	17.0
Web thickness	ts	[cm]	1.0
Cold formed			
Static values			0
Area	А	[cm ²]	50.3
Moment of inertia	ly	[cm4]	1614.8
Moment of inertia	lz	[cm4]	1614.8

The selection of a different pipe, rectangular or lprofile is made via the "Selection" button in the FRILO cross-section selection dialog. The base design can be closed/open

The base desig	gri cari be ciosed/operi.	
Pile sort	Prefabricated drilled steel pile	•
Cross-section		۲
Profile steel	RO 900 x 10.0	1
Pile bulb	closed	-

Cast iron ductile driven pile:

The cross-section selection/editing is carried out as described under steel.

Shaft diameter	diameter of the circular bored pile.
Width/height	dimensions of a rectangular pile cross-section.
Reinforcement layer	definition of the reinforcement layer in all directions by specifying the distance between the adjacent outer surface and the centre of gravity of the longitudinal reinforcement bars.
Shaft length	shaft length of the bored pile (without expanded bottom end).
Inclination	angle between member axis and vertical.
Toe expansion	check this option if the bored pile shall be installed with an expanded bottom at its toe (only available for circular cross-sections).

Properties	4
Basic parameter	٩ 🕲
- Pile system	
Pile material	
Soil profile	
Groundwater	
🗄 - Loading	
🗄 - Design	
- Output	

FRILO

Pile system			0
Pile sort		Drilled pile	•
Cross-section			0
Cross-section type		Circle	+
Shaft diameter	ds	[cm]	90.0
Reinforcement layer	d1	[cm]	5.0
Pile dimensions			0
Shaft length	Ls	[m]	16.40
Inclination	α	[°]	0.0
Toe expansion			\checkmark
Length	Lb	[m]	0.00
Diameter	Db	[cm]	0.0
Bearing conditions at th	ne pil	e cap	0
Description			Cap
Shift in x-direction	СХ	[kN/m]	0.00
Shift in y-direction	су	[kN/m]	0.00
Shift in z-direction	cz	[kN/m]	0.00
Torsion around the x-axis	θx	[kNm/rad]	0.0
Torsion around the y-axis	θу	[kNm/rad]	0.0
Bearing conditions at th	ne pil	e base	0
Description			Base
Shift in x-direction	сх	[kN/m]	0.00
Shift in y-direction	су	[kN/m]	0.00
Torsion around the x-axis	θx	[kNm/rad]	0.0
Torsion around the y-axis	θу	[kNm/rad]	0.0

	Length: definition of the length of the toe expansion of a bored pile. Diameter: diameter of the toe expansion of a bored pile.			
Bearing conditions	Discrete bearing condition for translation/rotation (rigid, 0 = free, > 0 elastically supported).			
Special properties		Special verifications f	or micropiles	۲
Method	Selection of the buckling analysis for	Method	No stability verification	-
Wiethou	micropiles and ductile piles based on the	Bearing conditions at	No stability verification Stability verification according to EN 199	3
	publication by Ofner and Wimmer.	Description	Stability verification according to Ofner/V	
Pile system	Specifies the manufacturer-specific design	nation (name) of the	e pile system.	

Special properties ductile driven pile

Special properties ductile driven pile		Special properties of the d	uctile pile	8
Pipe length	Length of a pipe segment.	Pile system	Duktilpfahl Ty	p 170
Sleeve length	Sleeve length, based on the length of the pipe	Pipe length Lr	[m]	5.00
0	segment.	Sleeve length Lm	[m]	0.22
Rusting	Specifies the corrosion that is to be taken into	Rusting δ	[cm]	0.3
Rusting	account when checking the cross-section of a tension pile.	Internal bond strength $\tau Ri,k$	[N/mm²]	0.70
		Skin pressed		\checkmark
Internal bond strength	Basic value of the bond strength for the inner bond joint between the cast iron pipe and cement	Ram shoe Db	[cm]	27.0
		External bond strength $\tau R_{,k}$	[N/mm²]	0.32
	mortar.	Coefficient of friction µ		0.50
		Skin pressing active		\checkmark
Skin pressed	If this option is selected, the ductile driven pile is designed with shell grouting. The additional	Special verifications for m	icropiles	۲
	parameters diameter of the ram shoe, external	Method	No stability verif	ica' 🔹
	bond strength and friction value cast pipe/cement m	ortar are displayed.		

Special properties and verifications of grouted micropiles

Shaft diameter	Diameter of the grouted micropile.			

Special properties of the grouted micropile			pile 🙆
Pile system			Pipe grouted pile
Shaft diameter	d	[cm]	17.5

Special properties of the pipe grouted pile

External diameter da, cal	Calculated value of the outer diameter of the	Special properties of the pi	
	steel supporting element.	Pile system	
Internal diameter di	Calculated value of the inner diameter of the	External diameter	da,c
	steel supporting element.	Internal diameter	
Drill bit db	Diameter of the drill bit.	Drill bitt	¢
Widening a	Increase in the diameter of the drill bit as a	Widening	
	result of the drilling work.	Anchorage length coef	ficient r
Pressure resistance Rck	User-defined internal load-bearing capacity in	Pressure resistance	R
	compression. This value is used to verify the	Tensile resistance	R
	internal load-bearing capacity in compression, w	without buckling sa	fety.
Tensile resistance Rtk	User-defined internal tensile load-bearing capac	city. This value is us	sed fo

Special properties of th	e pipe g	grouted pile	0
Pile system		Pipe gn	outed pile
External diameter	da,cal	[cm]	5.2
Internal diameter	di	[cm]	2.6
Drill bitt	db	[cm]	17.5
Widening	а	[cm]	2.0
Anchorage length coeffici	ent n2		0.00
Pressure resistance	Rck	[kN]	0.0
Tensile resistance	Rtk	[kN]	0.0

User-defined internal tensile load-bearing capacity. This value is used for the Tensile resistance Rtk verification of the internal tensile load-bearing capacity.

C 25/30

B500B

XC2/X0 >> C16/20

3

•

÷

0

50.00

28.00

-

3

20 8

Concrete material

ore creen effecte

Concrete quality

Steel quality

Creep

Pile material

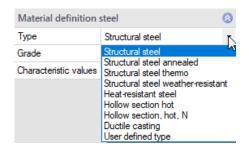
Selection option for the concrete quality or the steel grade or steel type/grade for steel piles..

Concrete material

Creep		Ignore creep effects	
01000		Default end creep number	
Ignore creep effects	this option disables the option (and the data-	Soil Humidity Bu	[%]
	entry fields) for the inclusion of any creep	Loading duration t0	[d]
	effects.	Cement type	N
Pre-set final creep factor	check the option to specify a user-defined	Reinforcement specificatio	ons / durability
	factor. Otherwise, it is calculated	Durability	XC2/X0 >> C16
	automatically using ambient parameters. Default value for the final creep factor of	Longitudinal bar diameter	[mm]
•	concrete; increase factor applied to the final	Stimup diameter	[mm]
	creep factor to account for non-linear creep Background information: The final creep facto determined for a permanent load level of appri- concrete strength. If the permanent load level must be used in the calculation in accordance verification whether the inclusion of linear cree calculation run, you can specify here the neces EN 1992-1-1, 3.1.4 (4), Eq. 3.7.	ox. 45 % of the compre is higher, an increased with EN 1992-1-1, 3.1.4 ep is permissible fails in	ssive creep factor 4. If the 1 a first
Soil Humidity	relative humidity of the ambient air in per cent		
Loading duration	concrete age in days at the time when the load	t is applied.	

Reinforcement specifications /durability

Durability accesses the durability dialog where you can define the parameters - see the document Durability - Creep Factor and Shrinkage Strain.pdf". Bar/stirrup diameter diameter of the longitudinal reinforcement bars or the stirrups. This diameter is used as a basic value when starting the calculation on the cross-section (exposure classes, reinforcement layer). The final diameter is determined when working through the reinforcement layout after the calculation.


type of cement in accordance with EN 1992, N, R or S.

Steel

Cement type

The following types of steel are available for prefabricated drilled piles made of steel:

Structural steel, structural steel annealed/thermo/weatherresistant, heatresistant steel, hollow section hot/hot N, ductile cast iron. Furthermore, "userdefined type" can be selected, whereby the values are entered via "Characteristic values" (edit button).

Ductile cast iron

For ductile driven piles, the concrete/steel grade and the steel type/grade (as described under steel) can be selected. The diameter of the reinforcing steel to be inserted into the cast iron pipe as a tension band must be specified under "Tie rod from reinforcingsteel".

Soil profile

You can define the soil layers directly in the left menu (see <u>Basic Operating Instructions-PLUS</u> – Data-entry via tables) or via a well-structured table. To access the table, click on the "Soil layers" tap below the GUI.

General soil parameters

Type of soil layer	the available options to define a soil layer are the following: - backfill, - soft layer or - base course (bearing layer).
Designation	designation of the soil layer.
Thickness	specification of the thickness of the soil layer.
Specific weight	specific weight $\boldsymbol{\gamma}$ of the soil.
Specific weight under	
buoyancy	specific weight $\gamma^{'}$ of the soil layer under buoyancy.

Parameters of the drained/undrained soil

Friction angle	characteristic value of the internal friction angle of the drained/undrained soil.
Cohesion	cohesion of cohesive soils in drained/undrained condition.

Settlement parameter

Stiffness modulus stiffness modulus *E*_s of the selected soil layer.

Soil parameters for negative skin friction

Approach	you can select whether the characteristic values of the negative skin friction shall be specified by the user or be determined using the effective stress method or total stress method.
Shear strength coefficient	coefficient for the shear strength to calculate negative skin friction in accordance with the total stress method. The magnitude of the factor α ranges from 0.15 to 1.60, depending on the kind of soil and the type of pile. It is often set to $\alpha = 1$ often as an approximation. This value is generally recommended for cohesive soils.

Soil parameters pile resistances

Skin friction	Characteristic value of skin friction.	
Peak pressure resistance	Characteristic value of peak pressure resistance for 0.02*D/0.03*D/0.1*D.	
Please refer to the more detailed description in the tooltips or in the info area.		

Groundwater

Groundwater	when you check this option, groundwater is considered.
Groundwater level	depth of the groundwater level, measured from the ground top edge.

Soil profile					0
Soil layers	0	1/3	C) 👍 🗙 🖀	1 🟦 遂
General soil parameter					0
Type of soil layer				Soft layer	+
Designation					Schluff
Thickness			d	[m]	5.40
Stroke weight			γ	[kN/m³]	18.00
Buoyant unit weight			Y	[kN/m³]	8.00
Soil drained parameters	i.				0
Effective friction angle			φ'	[*]	22.5
Cohesion			c'	[kN/m²]	5.00
Undrained soil paramet	ers				0
Effective friction angle		3	φu	["]	0.0
Cohesion		C	J,k	[kN/m]	10.00
Settlement parameter					0
Rigid module			Es	[kN/m²]	4500.00
Soil parameters for neg	ative	skin	frict	ion	0
Approach				Total tension	•
Shear strength coefficient		αι	n,k		1.00
Soil parameters pile resi	istan	ces			0
Skin friction at ssg*	q	s,k(ss	g*)	[kN/m²]	0.00 📝
Skin friction at sg		qs,k(sg)	[kN/m²]	0.00 📝
Peak pressure resistance	qb,k	(0,02	°D)	[kN/m³]	0.00 📝
Peak pressure resistance	qb,k	(0.03	D)	[kN/m²]	0.00 📝
Qbk0035 c	b,k ((0.035	D)	[kN/m²]	0.00 📝
Peak pressure resistance	qb,ł	c (0,1	•D)	[kN/m]	0.00 📝

Loading

Select in the left menu under Loads whether self-weight should be included in the calculation or not.

Surface load	specification of a permanent surface load applying to a large area. By clicking on the arrow icon wy you can access a <u>load value compilation</u> .
Time of application	Time of application of a terrain load in [days]. This should be before the point in time at which the consolidation status is considered. Otherwise this load is ignored.
Eccentricities	Indicates whether the additional eccentricities due to imperfections (position/inclination deviation) of the respective design standard are taken into account.

Parameter		0
Conlateralr dead weight		
Surface load	[kN/m²]	10.00 🔛
Time of application TA	[Tage]	0
Eccentricities		0
Apply eccentricity		\checkmark
Excentricity	[m]	0.00
Slope deviation		0.00
Remarks		0
about the loads		

Remarks

You can optionally enter comments to the loads. These comments are included in the output. See also <u>Remarks Editor</u>.

Pile loads

You can define pile loads in the left menu - see <u>Data entry via tables in the Basic Operating Instructions-PLUS</u> – or in a well-structured table accessible via the Pile loads tab below the GUI.

	Sort		Direction	Direction of rotation	Fk	Mk	ex	ey	Description	Action	Simultaneous Group	Alternate Group
			Ĵ.		[kN]	[kNm]	[mm]	[mm]	5			
1	Head load	•	vertical		2000.0 🛄	1000	0	0		Permanent loads	177.1	
2	Head load		vertical	<u></u>	1000.0 🕎	1.11	0	0		Cat. A: domestic, residental areas	none 📝	none 📝

Type (Sort)	head load/head moment. Select whether the load is a force or a moment, the adjacent data-entry fields for the direction, the direction of rotation, the force F_k or the moment M_k are enabled accordingly.
Direction	direction of action of the force: vertical, in x-direction or y-direction.
Direction of rotation	direction of rotation of the moment: about the x-axis or the y-axis.
Force <i>F</i> _k	entry of the value of the force. By clicking on the arrow icon 🛄 , you can access a <u>Load Value Compilation</u> .
Moment M _x /M _y	entry of the value of the moment.
Eccentricity e _x /e _y	definition of an eccentricity in the x-/y-direction for a vertical head load.
Description	optional brief description of the load.
Action	selection of the action in accordance with EN 1990 Table A.1.1 or user- defined action.
Simultaneous group	loads of a simultaneous group always act together.
Alternative group	loads of an alternative group always act individually and are not superimposed.
Note	Simultaneous/Alternative Groups: Select "New group" to create a group with a consecutive number (Ccy 1, Ccy 2 etc.) You can also add descriptions to simultaneous or alternative groups, which are included in the output.

Negative skin friction

		Properties			
Calculation approach	selection whether negative skin friction should be included and in which way.	Basic parameter ⊕. System			٩0
Pre-set as resultant	characteristic value of the negative skin friction in the ULS (Ultimate Limit State) the SLS (Serviceability Limit State)	 → Loading → Pile loads → Negative sk → Lateral press → Design 	100 C C C C C C C C C C C C C C C C C C		
Calculation based on settleme	nts	⊕. Output			
Calculation	start the calculation of the negative	Negative skin frict	ion		0
	skin friction based on the specified	Calculation approact	1	Calculation via settl	ement 🝷
	settlement parameters by activating	Calculation		without	
	this option.	Default as resultant Settlement-generating soil laye Calculation via settlement			
Datum (upper/lower level)	upper/lower datum of the soft layers	Upper level	zo	[m]	2.00
	relevant for settlement in relation to the	Lower level	ZU	[m]	10.00
	ground top edge.	Settlements			0
Soil settlement s _{n,k}	$S_{n,k}$ is the settlement of the soil layers	Soil settlement	sn,k	[cm]	0.0 📝
	to the load-bearing subsoil to be expected due to a subsequent top load or backfill.	Pile settlement (ULS)	sn,k (ULS)	[cm]	0.0
		Pile settlement (SLS)	sn,k (SLS)	[cm]	0.0
	Using the edit button, you can	Neutral design points			0
	optionally start the program Soil	Neutral point (ULS)		[m]	0.00
	Settlement <u>SBR+</u> to calculate the value	Neutral point (SLS)		[m]	0.00
	and transfer it to the PFAHL+ program	Resulting skin friction			
	via "Save and return".	Skin friction (ULS)	Fn,k(ULS)	[kN]	0.0
Pile settlement	ULS: limit settlement of the pile in the	Skin friction (SLS)	Fn,k(SLS)	[kN]	0.0
Neutral point	ultimate limit state or calculated settlement in the ultimate limit state. SLS: settlement to be expected in the serv indication of the position of the neutral po	5		ite	
•	(ULS)/serviceability limit state (SLS).				
Skin friction	indication of the resulting skin friction in t (ULS)/serviceability limit state (SLS).	he ultimate limit	state		

Lateral pressure

Calculation approach	According to specification or according to	Determination of the lateral loads			
calculation approach	EA-Pfähle 2012 or the DGGT Annual Report	Calculation approach	Acc.to EA-Piles 2012	-	
	2020	viewing time Tuc	Default Acc to EA-Piles 2012		
Viewing time	Time of observation for which the lateral	Determination of lateral loads Acc. to EA-Piles 2012 Acc. to EA-Piles 2022			
	pressure is to be calculated. (See also	Input of lateral loads		0	
	Application time of the surface load).	Lateral loads 🛛 🔘 0/0	• • • • • • • • •	2	
Determination of lateral loads	Optionally, the <u>EDB+</u> Earth Pressure Calculation determine the lateral loads (Edit button).	on program can be star	ted to		

You can define pile loads in the left menu - see <u>Data entry via tables in the Basic Operating Instructions-PLUS</u> – or in a well-structured table accessible via the Pile loads tab below the GUI.

Load direction	zo	p,zo	zu	p,zu	Remarks	
	[m]	[kN/m]	[m]	[kN/m]		
1 in x direction	0.00	5.00 💷	16.40	10.00 🛄		

Load direction	direction of action of the lateral load: in the x- or y-direction.
Datum z_0/z_u	indicates the upper/lower datum for the upper/lower load value of the lateral load p , measured from the pile top.
Load value at p_{zo}/p_{zu}	Load value at the upper/lower datum.
By clicking on the arrow icon 📱	, you can access a <u>Load Value Compilation</u> .
Remarks	you can add brief comments on the lateral loads.

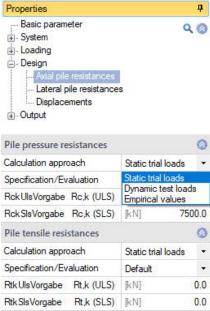
Design

Design method			
Nonlinear design Serviceability	optionally, you can perform a cold design based on the general method as per EN 1992-1-1, 5.8.6. The method is based on a non-linear determination of the second- order internal forces with consideration of the non- linear material behaviour of concrete and reinforcing steel.	Properties Basic parameter System Loading Design Axial pile resistances Lateral pile resistances Displacements	म २ (
Ignore min. <i>A</i> s compression members	checking this option disables the consideration of the minimum longitudinal reinforcement for compression members, which results in accordance with EN 1992-1-1, 9.5.2.	Design method Nonlinear design Serviceability Ignore Min As compression members	0
Ignore minimum eccentricities	checking this option disables the consideration of the minimum eccentricity with compression-loaded cross- sections, which results in accordance with EN 1992-1-1, 6.1 (4). In standard cases, the minimum eccentricities only have an effect in pile areas in which the moments from imperfections have a zero crossing.	Ignore minimum eccentricities designed like a wall Remarks about resistances about the results	
Design as wall	enables the treatment of the pile as a wall. The design ar rules for walls are applied irrespective of the actual cross dimensions.		

Remarks

You can optionally enter comments to be included in the output document behind the resistances/calculation results. See also <u>Remarks Editor</u>.

For prefabricated driven steel piles/ductile driven piles


Cross-section design elastic according to equation 6.1 or plastic according to equation 6.2 Equivalent member verification according to 6.3.3 (Annex A or B) or according to 6.3.4

Axial pile resistances

Pile pressure resistances

options for the determination of the pile's resistance to compression: - Static trial loads, - Dynamic test loads or - Empirical values.	
selection whether the pile pressure resistance is specified (pre-set) or calculated.	Pil
user-defined characteristic values of the total pile resistance (compression), separately for the ultimate limit state ULS and the serviceability limit state SLS.	Ca Sp Ro
characteristic compression resistance of the pile, separately for the ultimate limit state ULS and the serviceability limit state SLS, determined from a static pile test load or from empirical values, depending on the selected calculation approach.	Ro Pil Ca Sp Rtl
	to compression: - Static trial loads, - Dynamic test loads or - Empirical values. selection whether the pile pressure resistance is specified (pre-set) or calculated. user-defined characteristic values of the total pile resistance (compression), separately for the ultimate limit state ULS and the serviceability limit state SLS. characteristic compression resistance of the pile, separately for the ultimate limit state ULS and the serviceability limit state SLS, determined from a static pile test load or from empirical values,

Pile tensile resistances

Calculation approach	options for the determination of the pile's resistance to tension: - Static trial loads, or - Skin friction.
Specification/Evaluation	selection whether the pile tensile resistance is specified (pre-set) or calculated.
R _{t,k} pre-set	user-defined characteristic values of the total pile resistance (tension), separately for the ultimate limit state ULS and the serviceability limit state SLS.
Tensile resistance $R_{t,k}$	characteristic tension resistance of the pile, separately for the ultimate limit state ULS and the serviceability limit state SLS, determined from a static pile test load.

Lateral pile resistances / subgrade areas

Calculation approach	calculation approach to determine the lateral resistances (subgrade reaction modulus method).		
Subgrade reaction modulus m	nethod click on the edit button 📝 to start the determination of the subgrade areas based on the soil parameters (layer thicknesses).		
Subgrade areas	indicates the calculated values of the upper level $z_{o,i}$ /lower level $z_{u,i}$ and the pertaining length of the subgrade area l_i .		
Subgrade reaction values	$ select the calculation approach. \\ - Definition via stiffness modulus: \\ E_{s,k,i} & characteristic value of the stiffness modulus. \\ - Definition via subgrade reaction modulus: \\ D_{s,j} & equivalent shaft diameter or relevant cross-section width. \\ k_{s,k,i} & characteristic value of the subgrade reaction modulus. \\ $		
Earth resistances	earth resistance at the upper/lower level.		
Spatial earth resistances	spatial earth resistance at the upper/lower level.		

Deformations (Displacements)

Permissible horizontal displacementsenter the permissible/resulting deformation of the pile head.Limit of the vertical displacementindicates the permissible limit settlement of the pile head in the
serviceability limit state (SLS).

Reinforcement dialog (ribbon)

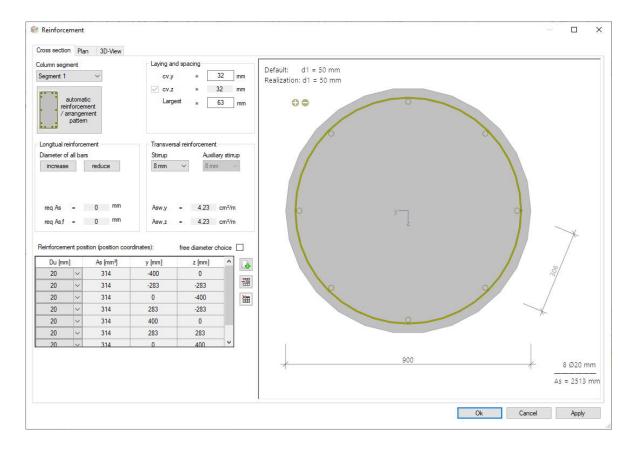
Reinforcement layout

The reinforcement layout can either be created automatically or defined manually.

Access via the button in the upper menu bar.

Note: Click on the small arrow pointing downwards to access the options "Generate reinforcement patterns" and "Remove reinforcement patterns".

Generate reinforcement patterns


Automatically arranges the reinforcement for every single cross-section.

Remove reinforcement patterns

Removes all existing the reinforcement patterns.

Edit reinforcement layout

Click on the centre of the button to access the reinforcement layout dialog which allows you to create and edit reinforcement patterns.

Cross-section

Graphical view of the cross-section. Allows you to set reinforcement parameters such as the longitudinal and transverse reinforcement, the spacing/the position etc.

Column segment

For multi-part columns, select the column segment for which the reinforcement layout is to be created.

Automatic reinforcement laying/arrangement

Opens the dialog for selecting the reinforcement arrangement - the options available for selection are self-explanatory.

In the right dialog area, select the spacing, the diameters of the longitudinal bars and stirrups as well as the maximum grain.

Reinforcement layer

You can add or remove bars via the corresponding icons.

Interactive reinforcement GUI

The graphical user interface is interactive, i. e. you can add/remove bars or increase/reduce diameters using the +/- icons or the context menu (right mouse button).

Plan view

Graphical view from the side.

Compaction areas:

As per standard	controls the automatic determination of the compaction areas of the transverse reinforcement.
lv,top/bottom	length of the compaction areas of the transverse reinforcement at the upper/lower segment end.
Pre-set steel qty. Asw	pre-set value for the referenced cross-sectional area of the transverse reinforcement

3-D view

The right mouse button can be used to rotate and tilt the view.

Output

Scope of the output, calculation, results

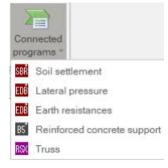
To start the output, click on the Calculate button.

After the calculation, the loading is displayed in the bottom right-hand corner of the GUI and provides a good overview of the economic efficiency of the structural system entered.

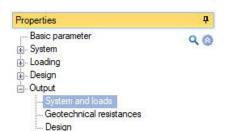
Results

Via the "Results" tab, you can display the different result graphs.

Output scope


By checking the desired options, you can determine the scope of data to be put out.

Output as a PDF document

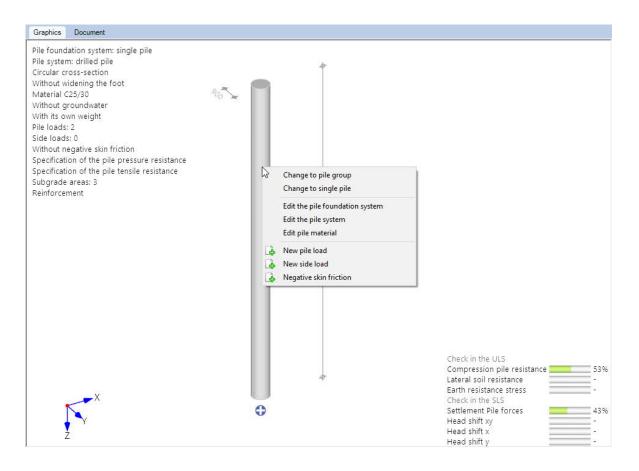

Via the <u>Document</u> tab, you can display the document in PDF and print it. See also <u>Output and printing.pdf</u>

Connected programs

You can launch the interfaced programs Soil Settlement SBR+, Earth Pressure Calculation EDB+, Reinforced Concrete Column B5+ and Framework RSX (steel pile).

Calculate	Design Results
Ci	alculation

		٢
all on/off		
Pile system		0
Pile system		
Scale pile system	1:200	-
Soil profile		\checkmark
Material		
Load		0
Actions		
Load groups		
Pile loads		
Scale pile loads	1:100	•
Negative skin friction		
Scale Negative skin friction	auto	•
Lateral loads		A 🗸
Scale lateral loads	auto	•



Definition options in the graphical user interface

Use the right mouse button to display the context menu.

For data entry in the GUI in the PLUS programs, see also the Basic Operating Instructions PLUS.

For example, dimensions or load values can be directly clicked and changed in the GUI. Other data-entry options are accessible via the general context menu (right click on an empty area in the GUI) or via the context menu of the pile or via the interactive texts on top left. By clicking the +/- icon on bottom, you can add or remove a toe expansion.

