

# Shear Panel Stiffness ST13

### Contents

| Application options                                       | 2  |
|-----------------------------------------------------------|----|
| Basis of calculation                                      | 2  |
| Data entry                                                | 3  |
| Definition of the structural system                       | 3  |
| Material - beam                                           | 4  |
| Fasteners - trapezoidal plate profile                     | 5  |
| Shear-field restraint - parameters                        | 5  |
| Parameters for the calculation of the torsional restraint | 6  |
| Calculation and results                                   | 8  |
| Output                                                    | 9  |
| Output profile                                            | 9  |
| Reference literature                                      | 10 |

### Basic Documentation – Overview

In addition to the individual program manuals, you will find basic explanations on the operation of the programs on our homepage <u>www.frilo.com</u> in the Campus-download-section.

*Tip: Go back - e.g. after a link to another chapter / document - in the PDF with the key combination "ALT" + "left arrow key".* 



## Application options

For beams under bending stress, there is always a risk of lateral shift and torsion. The examination of lateral torsional buckling is based on the assumption that the lateral shift v und the torsion **9** can occur independently of each other.

In many cases, structural parts such as trapezoidal steel sheeting are connected to the beams that provide elastic support. You can map the effect of stabilising components in the calculation through rotational springs  $c_{\theta}$  and through the ideal shear stiffness  $S_i$ . The total prevention of the lateral shift v at the distance f from the shear centre M constitutes a limit case, in which we speak of as "fixed axis of rotation".

The stabilising effect of the trapezoidal steel sheeting on bending beams can be considered from two different points of view. On the one hand, the fixity against lateral shift and torsion can be proven by establishing evidence of sufficient shear stiffness and torsional restraint. In this case, a verification of the beam's resistance to lateral torsional buckling is not required. On the other hand, it is permitted to consider the effective shear stiffness and the effective torsional restraint in the determination of the ideal lateral torsional buckling moment  $M_{Ki,y}$  instead of performing the afore-mentioned verification. The verification of the resistance to lateral buckling must be performed accordingly in this case.

The ST13 application calculates the rotational spring  $c_{\theta}$  [kNm/m], the ideal shear stiffness S [kN] as well as the translational restraint  $c_y$  [kN/m<sup>2</sup>]. These values allow you to take the stabilising effect of trapezoidal steel sheeting into account. In addition to this, the application verifies the fixity against lateral shift and torsion. If the verification is not successful, an additional lateral stability verification is required. In practice, the verification whether the torsional restraint is sufficient is hardly ever successful. A lateral torsional buckling analysis is required in most cases. The spring constants calculated by ST13 can be transferred to the relevant applications such as BTII.

## Basis of calculation

See the document <u>ST13 Basis of Calculation.pdf</u> (only in German).



## Data entry

## Definition of the structural system

### Shear field

Trapez. plate pr

|                  | Click on the button                                                                                                                                                                                                                                                                                                                                        | to access the dialog                                                                                            | g 'Select tra                                      | pezoidal                                           | plate pro                                           | ofile' The                                                 |                                                      |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|--|--|
|                  | sheeting types of variou                                                                                                                                                                                                                                                                                                                                   | us manufacturers ar                                                                                             | e listed in t                                      | his sectio                                         | n. The ca                                           | alculation o                                               | of                                                   |  |  |
|                  | the restraint constants                                                                                                                                                                                                                                                                                                                                    | of a selected trapez                                                                                            | oidal steel                                        | sheeting                                           | is based                                            | on the                                                     |                                                      |  |  |
|                  | border conditions speci                                                                                                                                                                                                                                                                                                                                    | ified by the user.                                                                                              |                                                    |                                                    |                                                     |                                                            |                                                      |  |  |
|                  | Select trapez. plate pr                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                                                    |                                                    |                                                     |                                                            | <b>2</b>                                             |  |  |
|                  | F3: Goto tree                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | [                                                  |                                                    |                                                     |                                                            |                                                      |  |  |
|                  | Irapeze plate pr.     Ferroval     positive layer     negative layer     Fischer                                                                                                                                                                                                                                                                           | Description<br>FI 40/183 - 0.75<br>FI 40/183 - 0.88<br>FI 40/183 - 1.00<br>FI 40/183 - 1.13<br>FI 40/183 - 1.25 | 1+et [cm4]<br>21,6<br>27,7<br>33,8<br>38,4<br>42,6 | 1-et [cm4]<br>21,6<br>27,7<br>33,8<br>38,4<br>42,6 | Aet [cmf]<br>4,80<br>6,49<br>8,19<br>10,15<br>11,86 | K1 [m/kN]] K2<br>0,233<br>0,197<br>0,173<br>0,152<br>0.137 | 2 [mf/kN] *<br>10,21<br>6,71<br>4,80<br>3,50<br>2,69 |  |  |
|                  | After selecting a trapez it is to be used is shown                                                                                                                                                                                                                                                                                                         | oidal steel sheeting<br>h below the display                                                                     | , the positic<br>field.                            | on (positiv                                        | ve, negati                                          | ive) in whic                                               | h                                                    |  |  |
|                  | Trapez, plate pr. FI                                                                                                                                                                                                                                                                                                                                       | 100/275 - 0.75 >>><br>e position)                                                                               |                                                    |                                                    |                                                     |                                                            |                                                      |  |  |
|                  | The selection of the tra<br>profile is used in the po<br><i>Note: You can access th</i><br><i>sheeting</i> '.                                                                                                                                                                                                                                              | pezoidal steel sheet<br>sitive or negative po<br>nis selection dialog a                                         | ting determ<br>osition.<br>also via the            | ines impl<br><i>menu iter</i>                      | icitly whe<br>m ′Trapez                             | ether the<br>z <i>oidal</i>                                |                                                      |  |  |
| Beam cr. section | Click on the button to access the dialog <u>Select - edit cross section</u> . A list of the available cross-sections is displayed. When selecting a cross-section, the calculation of the restraint constants is based on the border conditions specified by the user. <i>You can access this selection dialog also via the menu item 'Profile - beam'</i> |                                                                                                                 |                                                    |                                                    |                                                     |                                                            |                                                      |  |  |
| Loading          | type of loading. The following options are available for selection:                                                                                                                                                                                                                                                                                        |                                                                                                                 |                                                    |                                                    |                                                     |                                                            |                                                      |  |  |
|                  | <ul> <li>structural load; the t<br/>bending stress</li> </ul>                                                                                                                                                                                                                                                                                              | rapezoidal steel she                                                                                            | eeting is pre                                      | essed aga                                          | ainst the                                           | beam unde                                                  | r                                                    |  |  |
|                  | <ul> <li>suction; the trapezo<br/>stress</li> </ul>                                                                                                                                                                                                                                                                                                        | idal steel sheeting l                                                                                           | ifts up from                                       | the bear                                           | n under k                                           | bending                                                    |                                                      |  |  |
| Number of spans  | the total span is defined<br>Consequently, the resul                                                                                                                                                                                                                                                                                                       | d via the number of<br>ting total length is                                                                     | partial spar<br>I₀ · n.                            | ns n with                                          | the span                                            | length I <sub>0</sub> .                                    |                                                      |  |  |
| Span length      | length I <sub>0</sub> of a partial spa<br>corresponds to the spa-<br>frames).                                                                                                                                                                                                                                                                              | n in [m];<br>cing of the compon                                                                                 | ents to be s                                       | trutted (e                                         | e.g. spaci                                          | ing of porta                                               | I                                                    |  |  |
| Span height      | height H <sub>s</sub> of the shear p<br>corresponds to the leng<br>member of a portal frar                                                                                                                                                                                                                                                                 | anel in [m];<br>jth of the componer<br>ne)                                                                      | nt to be stru                                      | tted (e.g.                                         | length o                                            | f the vertica                                              | al                                                   |  |  |
| Shear field      | from axis (0 to n), at w                                                                                                                                                                                                                                                                                                                                   | hich the structurally                                                                                           | effective s                                        | hear pane                                          | el starts.                                          |                                                            |                                                      |  |  |
|                  | to axis (0 to n), at whic<br>These specifications ar<br>by the shear panel.<br>The numbering of the a                                                                                                                                                                                                                                                      | the structurally ef<br>e used to determine<br>xes starts with zero                                              | ffective she<br>e the numbe<br>and is indic        | ar panel e<br>er of com<br>cated in t              | ends.<br>ponents<br>he graph                        | to be strutte<br>ical                                      | ed                                                   |  |  |
|                  | representation.                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                    |                                                    |                                                     |                                                            |                                                      |  |  |



### Material - beam

Access the material definition dialog by double-clicking on the item 'Material - beam' in the main menu.

You can select the material as per DIN 18800 part 1, table 1, from the displayed lists (type, grade) or enter user-defined values. The software assumes a constant module of elasticity  $E_k$  and a constant yield stress  $_{yk}$  over the total beam.

|                                                                                                                                  | Material - beam                                                        | <b>—</b>       |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------|
|                                                                                                                                  | Type of steel<br>General structure st                                  | Grade of steel |
| <ul> <li>System input</li> <li>Cross-section STP</li> <li>CS - beam</li> <li>Material - beam</li> <li>Fastening - TPP</li> </ul> | Fine grain structural<br>Tempering steel<br>Cast steel<br>user defined | \$275<br>\$355 |
| Parameters                                                                                                                       | GammaM= 1,10                                                           | user defined   |
| Remarks                                                                                                                          |                                                                        | OK Cancel      |

### Material

First select the type of steel and then the grade.

For the available steel types, the characteristic values of the moduli of elasticity and shear are considered in the calculation. In connection with the stress verification, you should note, that the characteristic value of the yield strength  $f_{yk}$  is set to the standard value, the product thickness of the cross-sections must be taken into account, however, and must be reduced if required.

### User-defined material parameters

Click on 'User-defined' in the type menu and then on the 'User-defined' button.

Enter a name for the material and the characteristic values for the yield strength  $f_{yk}$  and the tensile strength  $f_{uk}$  as well as for the modulus of elasticity  $E_k$  and the shear modulus  $G_k$  an.

If you specify material parameters that correspond to a standard steel according to DIN EN, the values are reset to those of the corresponding type and grade.

| Description      |     |       | Partial safety I | factor |       |
|------------------|-----|-------|------------------|--------|-------|
| Sxxx             |     |       | GammaM           | 1,10   |       |
| Strengthes       |     |       | Moduli           |        |       |
| Elastic limit    | 240 | N/mm² | E-modulus        | 210000 | N/mm² |
| Tensile strength | 360 | N/mm² | G-modulus        | 81000  | N/mm² |
|                  |     |       |                  |        |       |



### Fasteners - trapezoidal plate profile

### Bolts in...

Select the type of fasteners from the selection list:

- bottom flange, the trapezoidal steel sheeting is fixed to the lower flange
- top flange, the trapezoidal steel sheeting is fixed to the upper flange

### Bolt spacing

Select the desired bolt spacing from the selection list:

- $1 \cdot br$ ; the trapezoidal steel sheeting is fixed at each profile rib.
- 2 · br; the trapezoidal steel sheeting is fixed at every second profile rib.

### Special construction

Check this options when the trapezoidal steel sheeting is fixed in accordance with DIN 18807-3, figure 7.

- c<sub>A</sub> connection stiffness resulting from the border conditions specified by the user. The connection stiffness is part of the <u>torsional restraint</u>.
- max bt maximum permissible flange width of the trapezoidal steel sheeting, which results from the border conditions specified by the user.

### Shear-field restraint - parameters

- K1/K2 shear panel values in accordance with the building inspection approval for the configuration of the fasteners in accordance with DIN 18807-3, figure 7 for the calculation of the ideal shear modulus in [m/kN] / [m²/kN].
- Ls length of the structurally effective shear panel in [m].
- n number of components to be strutted. Please keep in mind that the edge beams are only included half in the calculation.
- G<sub>s</sub> ideal shear modulus in [kN/m].

Calculation as per DIN 18800-27, eq. (7)

Check this option if the minimum shear stiffness is to be calculated with equation (7) DIN 18800-2.

| Parameters shear stiffness         |       |          | ×     |
|------------------------------------|-------|----------|-------|
| Coefficient shear field            | K1=   | 0,259    | m/kN  |
| Coefficient shear field            | K2=   | 38,64    | m²/kN |
| Shear field length                 | Ls=   | 12,00    | m     |
| Number of beams                    | n=    | 2,00     | Stk   |
| Shear mudulus trapezoid plate      | Gs=   | 2874,39  | kN/m  |
| Calculation acc. to DIN 18800-2 ed | ą.(7) | ۲        |       |
| Calculation acc. to Vogel/Heil     |       | $\odot$  |       |
| req. shear stiffness               | Smin= | 10635,71 | kN    |
| ОК                                 | Can   | cel      |       |

Calculation in accordance with Vogel/Heil

Check this option if the minimum shear stiffness is to be calculated in accordance with <u>Vogel/Heil</u> [9], page 232.

S<sub>min</sub> required shear stiffness, an additional examination of lateral torsional buckling of the beam under bending stress is not required (fixed axis of rotation)

| stening trapezoide plate | profile                   |             |              |  |  |  |
|--------------------------|---------------------------|-------------|--------------|--|--|--|
| bolts at                 | E                         | Bottom flan | ge 🗸 🗸       |  |  |  |
| Bolt spacing             | pacing 1*br (at each rib) |             |              |  |  |  |
|                          |                           | Special o   | construction |  |  |  |
| Connection stiffness     | cA=                       | 5,20        | kNm/m        |  |  |  |
| Chord width trape, plate | max bt=                   | 40,00       | mm           |  |  |  |
| Lhord width trape, plate | max bt=                   | 40,00<br>OK | mm<br>Cance  |  |  |  |



### Parameters for the calculation of the torsional restraint

### Moment coefficient for the verification of a sufficient torsional restraint ...

| Free axis of rotation  | coefficient <i>ktheta</i> as per DIN 18800-2, table 6, column 2.<br>A free axis of rotation must be assumed if the condition formulated in<br>equation (7) of DIN 18800-2 is not satisfied. |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fixed axis of rotation | coefficient <i>ktheta</i> as per DIN 18800-2, table 6, column 3.<br>A fixed axis of rotation may be assumed if the condition formulated in<br>equation (7) of DIN 18800-2 is satisfied.     |

#### Torsional restraint through bending stiffness of the component to be strutted

| k              | system c              | system coefficient                                                                                              |  |  |  |  |  |  |
|----------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                | k = 2                 | for single-span and double-span beams                                                                           |  |  |  |  |  |  |
|                | k = 4                 | for three-span and multi-span beams                                                                             |  |  |  |  |  |  |
| E <sub>k</sub> | characte              | ristic value in [kN/cm <sup>2</sup> ] of the modulus of elasticity.                                             |  |  |  |  |  |  |
| la             | area mor              | area moment of inertia of the trapezoidal profile in [cm <sup>4</sup> ].                                        |  |  |  |  |  |  |
| а              | spacing               | of the components to be strutted (beams) in [m].                                                                |  |  |  |  |  |  |
| c theta M      | characte<br>the trape | ristic value in [kNm/m] for the torsional restraint provided by the bending stiffness of zoidal steel sheeting. |  |  |  |  |  |  |

| at free lakis of rolation              | kthota-       | 4.00     |                   | at fixed recary axis    | ktheta- | C,00 |      |
|----------------------------------------|---------------|----------|-------------------|-------------------------|---------|------|------|
| Rotary found. from bending stiffness   | s of supporte | ed membe | :                 |                         |         |      |      |
| Eeam coeïfcient                        | k             | 2        |                   | Moment of inertia       | la-     | 155  | or4  |
| Characteristic E-module                | Ek=           | 210000   | N/mm <sup>2</sup> | Partia field length     | Э=      | E,00 | ٣    |
| Rotary lound app. DIN 18800 2ol.(309)  | olhota M=     | 103.57   | kNr/r             |                         |         |      |      |
| Rotary found. from deformation of c    | unniect       |          |                   | 🔽 otheta A, ki alwaya s | et      |      |      |
| Not Fource acc. to DIN 10000-2 tab.7   | othets A-     | 5,20     | >>                | Loading capacity        | -       | C 00 | <\/r |
| Flange width                           | b=            | 10,00    | сп                |                         | - 444 – |      |      |
| Rotary lound app. DIN 18900 2ol.(309)  | othota A=     | 5,20     | kNm/m             |                         |         |      |      |
| Botary found from profile deform       |               |          |                   |                         |         |      |      |
| Profile height in [cm]                 | h=            | 200      | mm                | Flange width            | ר=      | 100  | ΥM   |
| Wab thickings:                         | ÷-            | 5,6      | mm                | Flange this knews       | t-      | 8,5  | ΥM   |
| CS coefficient                         | c1=           | 050      |                   |                         |         |      |      |
| Rotary lound: acc. DIN 18800-2el.(309) | ctheta P-     | 17,28    | kNm/m             |                         |         |      |      |

### Torsional restraint provided by the deformation of the connection

c'theta A characteristic value in [kNm/m] for the connection stiffness  $\overline{c}_{9A,k}$  of trapezoidal steel sheeting referenced to a flange width of 100 mm as per DIN 18800-2, table 7.

Click on the button to access the dialog 'Torsional restraint as per DIN 18800-2, table.7..." The displayed dialog corresponds to table 7 of DIN 18800-2.

The concrete value for the characteristic connection stiffness of trapezoidal steel sheeting



depends on the border conditions specified by the user and is referenced to a flange with of 100 mm.

You should note in this connection that when selecting a different value in column 'c', also different border conditions are required as a basis. When you confirm your selection with 'OK', the corresponding new border conditions are applied automatically to the structural system.

| stary foun | dation acc. | to DIN 1880 | 0-1 tab.7 |           |        |        |          |       |        |
|------------|-------------|-------------|-----------|-----------|--------|--------|----------|-------|--------|
| Line       | Trapeze     | pr. layer   | Bolt      | ts in     | bolt s | pacing | Washer   | c     | max bt |
|            | Positive    | Negative    | Bottom fl | Top flang | br     | 2"br   | diameter | v     |        |
| Loading    |             |             |           |           |        |        |          |       |        |
| 1          | ×           |             | X         |           | ×      |        | 22       | 5,20  | 40     |
| 2          | x           |             | х         |           |        | х      | 22       | 3,10  | 40     |
| 3          |             | x           |           | x         | ×      |        | Ka       | 10.00 | 40     |

b flange width of the beam profile in [cm].

#### Always include ctheta A

Check this option if the resilience of the connections should always be considered (as required by Lindner [6]). Uncheck this option if the software should check whether the resilience of the connections can be disregarded because of the contact moment (in accordance with Krüger [7]).

#### Load-bearing capacity qtz

load-bearing capacity of the beam under bending stress in [kN/m].

ctheta A characteristic value in [kNm/m] for the torsional restraint resulting from the deformation of the connection.

### Rotational restraint resulting from the deformation of the profile

- h profile height in [cm] of the beam under bending stress.
- s web thickness in [cm] of the beam under bending stress.
- b flange width in [cm] of the beam under bending stress.
- t flange thickness in [cm] of the beam under bending stress.
- c1 for I-shapes under structural load or suction load c1 = 0.5
  - For C-shapes under structural load  $c_1 = 0.5$
  - For C-shapes under suction load  $c_1 = 2.0$
- ctheta P characteristic value in [kNm/m] for the torsional restraint resulting from the deformation of the beam profile.



## Calculation and results

### Restraint constants

| Shear panel restraint S           | ideal shear stiffness in [kN]                                                                          | Foundation const                                              | tants                                  |                                        |                               |
|-----------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------|
| Translational restraint cy        | translational restraint in [kN/m]                                                                      | Shear field found.                                            | S=                                     | 17246                                  | kN                            |
| Torsional restraint c             | torsional restraint in [kNm/m]                                                                         | Transl foundation                                             | су=                                    | 14560                                  | kN/m²                         |
|                                   | R                                                                                                      |                                                               | c theta=                               | 4,49                                   | kNm/m                         |
| Verification of sufficient shear  | stiffness and torsional restraint                                                                      | verification of su                                            | fficient obstruct                      | ion                                    |                               |
| Of lateral shift S <sub>min</sub> | verification of the minimum shear<br>stiffness in [kN] as per DIN<br>18800-2, eq. (7) or in accordance | of lat. displacemt.<br>of rotation (E-E)<br>of rotation (E-P) | S min=<br>c theta min=<br>c theta min= | 10636 < Sv<br>0,00 < cth<br>0,00 < cth | orh<br>eta exist<br>eta exist |
|                                   | with reference [7].                                                                                    |                                                               | Text outp                              | ut                                     |                               |
| Of the torsion (e - e) c          | verification of the minimum<br>torsional restraint as per DIN 18800-2<br>in [kNm/m].                   | 2, eq. (8) for the v                                          | verification m                         | ethod e -                              | e;                            |
| Of the torsion (e - p) c          | verification of the minimum torsional the verification method $e$ - $p;$ in [kNm/ $\!\!\!$             | restraint as per<br>'m].                                      | DIN 18800-2,                           | eq. (8) fc                             | or                            |



## Output

Output of the system data, results and graphical representations on the screen or the printer.

- Word output to MS-Word, if this software is installed on the computer.
- Screen displays the data in a text window on the screen
- Print starts the output on the printer

### Remarks

The 'Remarks' item in the left menu allows you to enter user-defined texts that are included in the output.

### Output profile

The dialog offers comprehensive options for the control of the output scope. Check the items to be put out.



File > Page view displays a print preview as a PDF



## Reference literature

- [1] DIN 18800-2
- [2] Stahlbauten-Erläuterungen zu DIN 18800 Teile 1 bis Teil 4
- [3] DIN 18807, Part 1 to Part 3
- [4] Stahltrapezprofile, 2. Auflage, Maaß, Hünersen und Fritzsche, Werner Verlag 2000
- [5] Stabilisierung von Biegträgern durch Trapezbleche, Stahlbau 56 (1987), p. 9-15
- [6] Stabilisierung von Biegträgern durch Drehbettung eine Klarstellung, Stahlbau 56 (1987), p. 365 373
- [7] Stahlbau Part 2, 2nd Edition, Ulrich Krüger, Ernst & Sohn Verlag 2000
- [8] Vogel; Heil: Traglasttabellen, 4th Edition 1996, Verlag Stahleisen GmbH, Düsseldorf